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ВВЕДЕНИЕ

Фторорганические соединения обладают ря-
дом уникальных химических свойств и находят 

широкое практическое применение в качестве 
лекарственных препаратов [1–7], агрохимикатов 
[8–10], люминесцентных материалов [11], жидких 
кристаллов [12], полимеров [13] и др. Природа по 
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существу игнорировала фтор как элемент биосин-
теза [2, 4], однако многие синтезированные агро-
химикаты и лекарственные средства содержат атом 
фтора. Причина включения атома фтора в фторор-
ганические соединения обусловлена уникальными 
свойствами этого элемента. Фтор – самый элек-
троотрицательный элемент и по своему размеру  
(rw 1.35) занимает промежуточное положение меж-
ду атомом водорода (rw 1.20) и кислорода (rw 1.40), 
поэтому замена связи C–H на C–F в лекарствен-
ном препарате является весьма консервативной по 
стерическим причинам [7]. Включение атома фто-
ра в молекулу лекарственного препарата влияет на 
растворимость, липофильность, биологическую 
активность и метаболическую стабильность [7, 14]. 
Ранее для фторирования органических соединений 
использовались такие фторирующие реагенты, как 
F2, FClO3, CF3OF и XeF2 [15–17]. Реагенты F2 и XeF2 
являются сильными окислителями и не обладают 
достаточной селективностью при синтетическом 
применении [18]. Большинство OF-реагентов не-
достаточно стабильны, а также довольно токсичны. 
Существенный прогресс в синтезе фторированных 
органических соединений за последние 40 лет был 
достигнут с использованием NF-реагентов, при-
чем наиболее эффективными среди них оказа-
лись N-фторбис(фенилсульфонил)амин (NFSI) и 
1-хлорметил-4-фтор-1,4-диазониабицикло[2.2.2]
октанбис(тетрафторборат) (Selectfluor, FTEDA-
BF) [7,15,16,19–22]. NF-реагенты формально яв-
ляются источником катиона фторония (“F+”), 
причем связь N–F имеет низко расположенную 
σ*-орбиталь и поляризована так, что на атоме F 
возникает частичный отрицательный заряд, ко-
торый благоприятствует нуклеофильной атаке на 
атом фтора по типу SN2 [21]. При фторировании 
в ходе присоединения к молекуле “F+” возника-
ет карбкатион, который может подвергаться пе-
регруппировке. Другой механизм фторирования 
включает одноэлектронный перенос и может кон-
курировать с механизмом SN2 с вовлечением в ре-
акцию катион-радикалов или радикалов, которые 
также могут подвергаться перегруппировкам [21]. 
В настоящее время в качестве фторирующих реа-
гентов широко используются фторйоданы [23]. Хи-
мия гипервалентного йода занимает особое место в 
органическом синтезе главным образом благодаря 
мягким условиям реакций и экологичности фторй-
одановых реагентов. Фторирование органических 
соединений может быть осуществлено другим пу-
тем – через предварительную электрофильную 
активацию субстрата с образованием катиона или 
катион-радикала, которые могут подвергаться пе-
регруппировке и далее взаимодействовать с источ-
ником аниона F-, например Py·nHF, Et3N·nHF, да-
вая фторпроизводное [24].

ФТОРИРОВАНИЕ С ПЕРЕГРУППИРОВКОЙ 
ВАГНЕРА–МЕЕРВЕЙНА И ЕЙ ПОДОБНЫМИ

Фторирование органических соединений с пе-
регруппировкой Вагнера–Меервейна сопровожда-
ется миграцией различных атомов или групп или 
изменением скелета молекулы. 

Пример 1,2-сдвига атома водорода, сопрово-
ждающего электрофильное фторирование аренов, 
впервые наблюдали при фторировании 1,3,5-три-
дейтеробензола (1) [25, 26]. Соотношение фтор-
бензол-d3–фторбензол-d2, определенное методом 
хроматомасс-спектрометрии, оказалось достаточ-
но высоким (1.28), что обусловлено миграцией ато-
мов водорода и дейтерия в промежуточно образую-
щихся σ-комплексах (схема 1).

Фторирование эпоксида 2 реагентом Py·3HF 
дает диол 3, очевидно, с вовлечением фенониевого 
иона А в результате 1,2-сдвига фенильной группы 
(схема 2) [27].

Фторирование ненасыщенных кетонов 4 ре-
агентом PhIO–HF·Рy в CH2Cl2 идет с миграцией 
арильной группы с образованием дифторкетонов 
5 с высокими и умеренными выходами (схема 3). 
Предполагается, что дифторкетон образуется в ре-
зультате атаки аниона F– на интермедиат B [28].

Фторирование производных стирола 6 фторйо-
даном 7 в присутствии AgBF4 осуществляется с ми-
грацией арильной группы (схема 4) [29]. 

Использование меченного дейтерием стирола 
6-D показало, что реакция, по всей вероятности, 
идет с образованием фенониевого интермедиата С 
(схема 5) [29].

Взаимодействие гипервалентного йодарена, 
образующегося in situ при окислении хирального 
арилйодида 9, со стиролами 10 приводит к энан-
тиообогащенным дифторпроизводным 11 через 
1,2-миграцию арила (схема 6) [30].

Предполагается, что реакция идет с образова-
нием фенониевого интермедиата D, а стереоспец-
ифичность реакции определяет катион-π-взаимо-
действие в π-комплексе ArFI+ c олефином (схема 7) 
[30].

Квантово-химические расчеты SMD-M06-
2X/6-311++G(d,p)+SDD согласуются с приведен-
ным в литературе механизмом реакции [31].

Описано аналогичное фторирование стиролов 
12 на основе катализа I(I)/I(III) с использованием 
p-TоlI в качестве катализатора, который при окис-
лении реагентом Selectfluor дает in situ p-TоlIF2 (схе-
ма 8). Фторирование идет с миграцией арильной 
группы даже в случае наличия в этой группе мощ-
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Схема 1
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Схема 3
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Схема 6
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ного электроноакцепторного заместителя (NO2, 
CF3, SO2Me) [32].

Каталитическое фторирование 1,1-дифенилэ-
тилена 14 с использованием катализаторов ArI  
(Ar = 2-MeOC6H4, 2-MeC6H4, 4-MeC6H4), м-хлор-
надбензойной кислоты (m-CPBA) как окислителя 
и Py•HF в качестве источника фтора осуществля-
ется с миграцией фенильной группы (схема 9) [33]. 

Аналогично, благодаря высокой миграционной 
способности арильной группы, фторирование со-
пряженных ароматических алкенов 16 дает дифто-
риды 17 (схема 10) [34].

Геминальное фторирование алкенил-N-метили-
минодиацетилборонатов 18 реагентами PhI(OAc)2 
и Py•HF дает дифторированные алкилбороны 19 
(схема 11) [35].

На примере дейтерированного бороната 18-D 
показано, что фторирование идет с миграцией фе-
нильной группы (схема 12) [35].

Арилаллены 20 подвергаются перегруппировке 
под действием дифторйодтолуола в присутствии 
20 мол. % BF3•OEt2 с образованием дифторме-
тилстиролов 21 (схема 13). Отсутствие перерас-
пределения дейтерия в аллене 22 (схема 14) и вы-
сокая эндотермичность реакции в случае субстрата  
с Ar = p-CF3C6H4 соответствуют механизму с ми-
грацией фенильной группы (схема 15) [36].

Предложен метод энантиоселективного ката-
литического вицинального фторирования элек-
тронодефицитных стиролов 24 с использованием 
производного резорцина 25 в качестве катализа-
тора (схема 16). Влияние заместителей X на соот-
ношение вицинального продукта к геминальному 
увеличивается с ростом акцепторной способности 
заместителя и описывается уравнением Гаммета. 
Увеличение соотношения Pyr•(HF)x с 1 : 9.2 до  
1 : 4.5 при фторировании 4-нитростирола привело 
к увеличению соотношения геминального к вици-
нальному продуктов. Предполагается, что конку-
ренция между замещением группы ArI анионом 
F–, дающим вицинальный продукт 26 (путь а), или 
образованием фенониевого иона, приводящим к 
геминальному продукту 27 (путь b), определяет со-
отношение этих продуктов (схема 17) [37]. 

Перегруппировка Вагнера–Меервейна в резуль-
тате 1,2-сдвига метильной группы при фторирова-
нии стиролов 28 реагентом Py·9HF в присутствии 
хирального арилйодида 29 и мета-хлорнадбензой-
ной кислоты дает дифторпроизводные 30 с высо-
кими выходом и энантиоселективностью (схема 
18). Предложено 2 варианта предполагаемого меха-
низма реакции: с опережающей атакой аниона F- 
(путь a) и с первоначальной миграцией метильной 

группы (путь b) (схема 19). На основании изучения 
кинетических изотопных эффектов 12С/13C на при-
мере меченого по метильной группе 1-(3,3-диме-
тилбутен-1)-4-нитробензола (31) сделан вывод о 
том, что более вероятен механизм b, а межмолеку-
лярная атака анионом F– определяет энантиосе-
лективность реакции [38]. 

Катализируемая комплексом кобальта 32 пе-
регруппировка Вагнера–Меервейна с миграцией 
арильной группы при фторировании аллильных 
производных 33 реагентом Me3NFPy·BF4 приводит 
к образованию фторидов 34 (схема 20) [39].

Электрофильное фторирование олефинов 35 
реагентом Selectfluor в присутствии 4-MeC6H4I 
и Py·9HF осуществляется с миграцией группы 
BMIDA (N-метилиминодиацетилборонат) с обра-
зованием дифторпродукта 36. Согласно кванто-
во-химическим расчетам методом B3LYP-D3(BJ), 
миграция группы BMIDA может осуществляться 
через переходное состояние E (схема 21) [40]. 

Предполагается, что геминальное фторирова-
ние стиролов 37 на основе катализа I(I)/I(III) осу-
ществляется с участием фенониевого иона F с об-
разованием дифторидов 38 (схема 22) [41].

При фторировании метиленциклопропанов 39 
реагентом Selectfluor в присутствии Py·HF образу-
ются дифториды 40. Предполагается, что реакция 
идет с образованием интермедиатов G, подвер-
гающихся перегруппировке Вагнера–Меервей-
на (схема 23). Движущей силой перегруппировки 
является снятие напряжения в циклопропановом 
фрагменте [42]. 

Фторциклизация пиридинилстиролов 41 с ис-
пользованием фторйодана 7 в присутствии AgBF4 
идет селективно с образованием фторпиридилок-
сазепинов 42. Предполагаемый механизм реакции 
включает образование интермедиата H феноние-
вого типа (схема 24) [43].

Чжу с сотр. синтезировали производные ок-
сазолина 43 из амидов 44 действием PhI, эфирата 
трехфтористого бора и мета-хлорнадбензойной 
кислоты. Фторирование осуществлено за короткое 
время (10 мин.) с хорошими и отличными выхода-
ми (схема 25). Ключевым интермедиатом реакции 
является ион фенониевого типа I [44].

Метиленинданы 45 подвергаются расшире-
нию цикла при фторировании реагентом 4-TolIF2, 
генерируемы in situ из 4-TolI действием реагента 
Selecfluor, с образованием трифтортетралина 46 
(схема 26) [45]. Введение в ароматическое кольцо 
электронодонорных заместителей Х уменьшает 
выход трифторида 46, что можно объяснить умень-
шением положительного заряда в ароматическом 
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Схема 9
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p-TolI, Selectfluor, (HOCH2CH2)N ∙ 5HF, Pyr ∙ 9HF

CH2Cl2 or (CH2Cl)2, 40°C

R = COMe, CO2Et, COC6H4X (X = H, Me, F)

Ar = CC6H4 (X = H, F, Br)

Схема 11

Ar Ar

F

F
18 1926‒82%

BMIDA BMIDA

PhI(OAc)2, Py ∙ HF

CH2Cl2, rt, 1‒10 min

OMe, CF3, CO2Me, F, Cl, Br), 1-naphthyl, 2-tienyl
Ar = XC6H4(X = H, Me, t-Bu, Ph, CH2CN, CO2Me,

Схема 12

Ph
18-D

D Ph D

Ph F

Ph D

Ph F

F

D

F

+
Ph

F

F

D

19-D

H-F F‒

H-F F‒

BMIDA
BMIDA

BMIDA

BMIDA

BMIDA

I+ I+

1,2-FPhIF2 ∙ HF

1,2-Ph
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Схема 13

Ar

R

Ar

F F

R

 10‒30 min

8‒79%20 21

TolIF2, BF3  ∙ O  ∙ Et2

ClCH2CH2Cl, reflux,

OBn, F, Cl, Br), 1-, 2-naphtyl
Ar = XC6H4(X = H, Me, Ph,  MeO,

R = H, Me, Et, i-Pr, XC6Y4 (X = H, MeO, Cl)

Схема 14

Ph

DD

Ph

H

F

F

DD

22 23

H

ClCH2CH2Cl, reflux

TolIF2, BF3 ∙ OEt2

Схема 15

Ph
I

F

F

F

I
F

Tl

F
F F

H

BF3

BF3

‒BF4-TolI

‒BF3

‒F-BF3
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Схема 16

Ar Ar

F
F

Ar

F

F

+

24 27

I

OO
RR

Me

25

34‒85%

N
H

O

R =

Selectfluor, 25

26

Mes

MeCF3SO2, NTf2)
Ar = XC6H4 (X = CF3, CN, NO2, TfO,CF3CO, MeSO2,

amine:HF,CHCl3

Схема 17

I
F

R

I
Ar

R

F

F‒

F‒

F‒

R

F

F

+

F

R

F

F

a

b

b

R

‒Cat

*Cat

R = CF3, CN, NO2, TfO, CF3CO, MeSO2, CF3SO2

Схема 18

Me

R

R
R

RF
F

I
OO

O

O

PhPh

O

2928 30

Ar Ar

,R, R = Me, NTs

Ar = XC6H4 (X = CF3, CO2Me, NO2)

Py ∙ 9HF, 29, m-ClC6H4CO3OH

70‒87%, ee > 20 : 1

CH2Cl2, ‒30°C, 48 h
Me

OBnBnO

MeO
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Схема 20

F Ar
Ar O

N N

O
Co

32
33 3423‒84%

Me Me
Me

Me
MeMe

32, Me3NFPy ∙ BF4,TMDSO

PhCl, 0°C, 2 h
H3C

t-Bu

t-Bu t-Bu

t-Bu

Ar = XC6H4 (X = H, Me, MeO, Ph,CF3, F, Cl, Br, NO2), 2-tienyl

Схема 21

Bmida R

F F
Bmida

35 36

R

E
19‒75%

I
F

Ph

B O
N

O

O
O

F
HFHF

Selectfluor, Py-9HF, 4-MeC6H4I
CH2Cl2, rt, 24 h

R = n-Pr, i-Bu, c-Hex, c-Hex, CH2, n-C5H11, n-C7H13, Cl(CH2)3, XC6H4CH2 (X = H, Me, Br)

Схема 19

F‒

F‒

F‒

F‒

Me

Ar'

F F

F
F

F

a

b

Ar'

Ar' = p-NO2C6H4

ArI-F

ArI-F

ArI-F ArI-F

Me

Me

Me

Me Me

Ar' Ar'

Ar'

Ar'
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Схема 22

37 3835‒81%

F

+
F

-

F

R

Ar
Ar

R

F F Y

Selectfluor, 4-TlIF, amin-HF

CHCl3, rt, 18‒24h

R = H, Me,CH2NHTs

OTf, NTf2,Cl, Br, MeCONMe3, C6H4NO2)
Ar = XC6H4 (X = H, CF3, CN, COCF3, SO2Me,

Схема 23

F F

17‒80%39 40

F

G

X X X

R
R

R

Selectfluor, Py-HF

PyH, PhMe, 40°C, 2‒24 h

 F, Cl, Br, I, NO2, 2-naphtyl
X = H, Me, i-Pr, Ph, CN, CO2Me, BnO,

Схема 24

H

N

N =

N

N
N

; ;

S

41

N

42

O

N

O

F

58‒78%

F

N

H

7, AgBF4

MeCN, rt
NHR2 NHR2

R1
R1

R2

R1

Me

Me Me

R2 = XC6H4 CO(X = H, MeO),
R1 = H, Me,Cl
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фрагменте фенониевого интермедиата. Выявлена 
корреляционная зависимость выходов трифторида 
46 при использовании σ-констант Гаммета.

Фторбензйодоксол 7 и молекулярные сита (MS) 
использованы для получения 4-фтороксазепинов 
47 из стиролов 48. Предполагается, что фторирова-
ние идет в результате каскадной 1,2-арильной ми-
грации–циклизации (схема 27) [46].

Изучение методом меченых атомов механизма 
трансформации амидостиролов 49С и 49D показа-
ло, что атомы 13C и дейтерия расположены исклю-
чительно в бензильном положении и, следователь-
но, осуществляется 1,2-сдвиг арильного фрагмента, 
а не миграция алкильной группы с образованием 
спироциклопропана J в качестве ключевого интер-
медиата (схема 28) [46]. Альтернативный механизм 
фторциклизации стирилбензамидов 49 с участием 
промежуточного соединения K был предложен на 
основе расчетов методом DFT (схема 28) [47]. 

При фторировании кислот 50, 51 действием 
фторйодана 7 и AgBF4 предполагается, что ключе-
вой стадией является миграция арильной группы 
(схемы 29–31) [48].

Фторирование производных циклопропана 54, 
осуществляемое гипервалентным фторйоданом 55, 
идет с внутримолекулярным расширением цикла с 
образованием производного пиперидина 56. Пред-
полагается, что в разрезании циклопропанового 
фрагмента участвует катион L, строение которого 
подтверждено методом спектроскопии ЯМР 1H, 
13C, 11B, 19F (схема 32) [49]. 

Фторирование бициклических азааренов 57 
реагентом Selectfluor идет с раскрытием цикла, в 
результате которого образуются нитрильные про-
изводные 58 (схема 33) [50].

Методом ЯМР 1Н авторы установили, что при 
фторировании 3-этилпиразоло[1,5-а]пиридина 
(59) реагентом Selectfluor при комнатной темпера-
туре образуется соль 60, которая при повышении 
температуры до 80оС дает 2-фтор-2-(пиридинил-2)
бутанонитрил 61 (схема 34) [50].

Фторирование пиранозида 62 реагентом 
Et2NSF3 (DAST) идет с образованием фторпроиз-
водных 63 и 64 соответственно с сохранением кон-
фигурации и с сужением цикла. Суммарный выход 
этих продуктов зависит от избытка реагента DAST 
(3–10 экв.) и уменьшается от 63 до 33% при увели-
чении количества DAST от 3 до 10 экв., а соотноше-

Схема 25

H
N

O
O

N
F

65‒95%44 43

O S
;

F

N

O
H

I

R1

R1

R1

R2

R2

BF3  ∙ Et2O, PhI, 3-ClC6H4CO3H

CH2Cl2, 0°C, 10 min

R2   =  XC6H4 (X = H, Me, t-Bu, CF3, F, Cl, Br, NO2), 2-naphtyl

R1   =   XC6H4 (X = H, Me, F, Cl, Br), 2-naphtyl

Схема 26

FX X

F

F

F

FX

F

F

N

O

O

31–79%
4645

4-TOlI, Selectfluor, Amine ∙ HF

ClCH2CH2Cl, rt, 24 h

X = H, Me, CF3, CN, MeCO2-CH=CH, F, Cl, Br, TfO,



17ФТОРИРОВАНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ЖУРНАЛ  ОРГАНИЧЕСКОЙ  ХИМИИ № 1 2025том 61

ние соединений 63 и 64 близко к 1. Предполагает-
ся, что ключевым интермедиатом реакции является 
бициклический оксираний-катион M, который 
подвергается атаке анионом F– (схема 35) [51]. 

Предложен прямой метод синтеза фторенами-
нов 65 из триазолов 66. Фторирование идет под 

действием Et2O·BF3 и (n-Bu)4N
+F– и предположи-

тельно включает миграцию атома фтора от атома 
бора к углероду в интермедиате N (схема 36) [52].

Разработан энантиоселективный синтез β,β-ди- 
фторалкилбромидов 67 из бромолефинов 68, ката-
лизируемый йодареном 69 в присутствии Py·9HF 

Схема 27

NH

O

N

O

4748

61–85%

F

7, 4A MS

R1 = t-Bu, XC6H4 (X = H, MeO), 3-tienyl

R1

R1

R4 = R5 = H, Me

R4

R4

R2
R2

R5

R5

R3

R3

MeCN, rt

R2 = H, Me, Me-C=CH2, CF3, CN, F, Cl, Br

R3 = Me, Et, i-Pr, t-Bu, Cy

Схема 28

NH

OPh

Alk

NH

OPh

I

F
Ar Alk

NH

OPh

I Ar

F

NH

OPh

FAlk

N

O

Ph

F

I

F
O

NH

OPh
J

49C

K

NH

OPh

D

D

49D

; ;

N

O

Ph

F
D DMe Me

MeMe
Me

t-Bu t-Bu

7, Ms
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Схема 29

O
X X

O
O

F

80–93%

50 52

OH

X = H, Me, MeO, CF3, F, Cl

7, AgBF4

CH2Cl2, 40°C, 1 h

Схема 30

X
R O

O

F

R
43–98%

5351

COOH

R =  Me, XC6H4 (X = H, Me, F, Cl)

7, AgBF4

CH2Cl2, 40°C, 1 h

Схема 31

I
F O

I
F

AgO OAg

I
F O

Ph

O

OAg

I

O+

O

O O

F‒ O O
F

7

F‒

H

BF4
‒

BF4
‒

BF4
‒

AgBF4

OH
OH
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Схема 32

R1

R2

R2
R1

NHR N
R

F
I

F
N

O

,

I N

O

O

54 56

55

O

L
46–98%

   BF3-Et2O

CH2Cl2/MeNO2, rt BF4
‒

R2 = H, c-Hex, c-Pr, Ph

R1 = Me, n-Pr, XC6H4CH2 (X = H, Me, t-Bu, MeO, F, Cl, Br), 2-naphtyl, 3-tiophenyl

R = Ts, Ns, Ms,  Boc,  PhSO2

Схема 33

R1R1

R2R2

X

N

N

Selectfluor

X

N

F

57 5831–97%

NC

MeCN, 80°C, 24 h

X = N, CH; R1 = H, Me, Br, AcEtN; 
R2 = Et, Ph(CH2)2, CH2OAc,CN, COOEt,
(CH2)2COOEt, All, PhOCO, COOH, 
4-XC6H4 (X = H, Me, t-Bu, Ph,CF3, CN,
CHO, Ac, COOEt, Cl, Br, NO2)

Схема 34

BF4
‒

N

N

Et

59

N Et

F

N

N

Et

60 61

H

F

+

NC
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в качестве источника фтора и мета-хлорнадбен-
зойной кислоты как окислителя. Предполагается, 
что трансформация включает окислительную пе-
регруппировку бромзамещенного олефина с обра-
зованием бромониевого катиона O (схема 37) [53].

В аналогичном превращении винилбромидов 
70 в дифторалкилбромиды 71 реакция осуществля-
ется под действием генерируемого in situ PhIF2·HF, 
получаемого из фенилйоддиацетата (PIDA), и 
включает миграцию атома брома (схема 38) [54]. 

1,2-Миграцию азидной группы наблюдали при 
фторировании винилазидов 72 под действием ге-

нерируемого in situ PhIF2·HF с образованием диф-
торазидов 73 (схема 39). Миграцию этой группы 
исследовали на примере меченного дейтерием суб-
страта 74, который дает продукт, дейтерированный 
по атому углерода, связанному с азидной группой, 
что исключает процесс элиминирования. Расчеты 
методом M062X/6-31G(d,p)/LANL2DZ показали, 
что барьер миграции азидной группы с вовлечени-
ем пятичленного переходного состояния P выше 
(67.0 ккал/моль), чем в случае трехчленного пере-
ходного состояния Q (15.1 ккал/моль) [55, 56].

Аналогичную 1,2-миграцию азидной группы 
наблюдали в реакции производных ацетилена 75 

Схема 35

F‒

F‒
O O

F
O

F

+
O+

62 63 64 M
OBn

OBn

OBn

OBn

BnO
BnOBnO

BnOBnOBnO BnO OAll

OAllOAllOAll

HO DAST, CH2Cl2

rt, 16 h

Схема 36

R1 R1

R2N

NN

H

F

6566 28–85%

Ar
N

H

F

N

MsEt2O ∙ BF3, (Bu)4N+F‒

CH2Cl2, reflux

BF2

NHR2

R1 = XC6H4 (X = H, Me, t-Bu, F, Cl, Br, CN, CH2Br, CH2CN,
         COMe, CO2Me)

R2 = SO2R (R = Me, n-Pr, MeC6H4, BrC6H4), Ms

Схема 37

F‒
R1

R1

R2

R2

F F

I
O

O

O
O

O

O

69

6768
R

O

F

N
N

Br
69, Py ∙ 9HF, 3-ClC6H4CO3H

CH2Cl2, –40°C

R1 = XC6H4 (X = CF3, CO2Et, CN, OTf, Cl, Br, NO2),
R2 = Me, Et, i-Pr, n-Bu, CH2OH, (CH2)2Br

52–98%, 63–93% ee

Br
Br

Me

Me

t-Bu t-Bu
SF5

F5S
CO2Me
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Схема 38

R R

F F

7170

N

O

O
O

O

N
Cl

O

N

O

O

H
N

O

O

N

O

O

N

N

N

; ;

;

;

57–96%

N ;

R =

;

R   = XC6H4OCH2 (X = CF3, CN, Ac, CO2Me,
PhCO, Ms, NO2,Cl), XC6H4CH2O (X = CN,CO2Me),
TsOCH2, TsNHCH2, R1(CH2)5 (R1 = OH, AcO, N3), COOH), 
BzO(CH2)2, BzO(CH2)3, EtO2C[CY](CH2)3 Y = CN,CO2Et,
PhCHCHCO2(CH2)3, PhO2SNR (R = c-Pent,c-Hex,
n-tetradecyl, c-octyl)

Br

Br

Ts

MeO2C

CH2Cl2, rt

Py ∙ 9HF, PIDA

Схема 39

N

N

N

I F

H

H
F

Ph

F

F

H

H

P

F N

N

N

F

H
F

I

Ph

H

F

Q

Ph D

D

74

R
+

R

F FPIDA

72 73

O

O O

O
O

O

O

O

62‒95%

; ;

N3

N3Py  ∙ HF
CH2Cl2, 25°C, 1 min

N3

R    = n-Bu, n-Hex, c-Pe, c-Hex, PhCH2, Ph(CH2)2,
X(CH2)3 (X = CN, N3, NO2, Cl), XC6H4 (X = CF3, CN, NO2),
XC6H4 (X = CHO, COMe, CO2Me, CF3,CN, NO2, Ms, F, Cl);
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при последовательном действии Me3SiN3, AgN3 и 
фенилйоддиацетата (PIDA), Py–HF при получе-
нии азидодифторидов 76 (схема 40) [57].

Действием реагента IF5·Py·HF на сульфиды 77 
синтезированы трифторсульфиды 78 с выходами 
52–84%. Можно полагать, что реакция идет с ми-
грацией группы ArS через образование эписульфо-
ниевого иона R (схема 41) [58]. 

ПЕРЕГРУППИРОВКИ С УЧАСТИЕМ  
РАДИКАЛОВ И КАТИОН-РАДИКАЛОВ  

ПРИ ФТОРИРОВАНИИ

При окислительном фторировании образуются 
радикалы или катион-радикалы, подвергающиеся 
молекулярным перегруппировкам.

В результате внутримолекулярной фторцикли-
зации ненасыщенных карбаматов 79 под дей-
ствием фторйодана 7 в присутствии катализатора 
AgSbF5 получены фторированные оксазолидиноны 
80 (схема 42). Предполагается, что фторирование 
осуществляется по радикальному механизму (схе-

ма 43). В пользу этого свидетельствует уменьшение 
выхода продукта 80 (R1 = 4-MeOC6H4, R

2 = Ph) при 
добавлении 2,2,6,6-тетраметилпиперидин-1-окси-
ла (ТЕМПО) для захвата радикалов [59].

Окислительное фторирование циклопропано-
лов 81, катализируемое AgNO3 или Fe(acac)3, идет 
также по радикальному механизму с раскрыти-
ем циклопропанового фрагмента и образованием 
фторкетонов 82 (схемы 44, 45) [60].

Фторирование циклобутанолов 83 обеспечива-
ет мягкий и удобный синтез фторметилзамещен-
ных циклопентанонов 84 (схема 46). Предложен 
механизм реакции с образованием катион-радика-
ла, который подвергается фторированию с образо-
ванием β-фторзамещенного карбкатиона, а затем 
осуществляется расширение цикла (схема 47) [61].

Аналогичный механизм предложен для превра-
щения аминов 85 в фторзамещенные индолины 86 
под действием реагента Selectfluor (схемы 48, 49) 
[62]. 

Схема 40

R

R

F F

75 7651–85%

1. Me3SiN3, H2O, AgN3,DMSO, 80°C

2. PIDA, Py-HF, CH2Cl2, 25°C
N3

R = n-Bu, n-Hex, c-HexCH2, c-PeCH2,
Ph(CH2)n (n = 1–3),Cl(CH2)n (n = 3, 4),
MeCO2(CH2)3, PhOCH2, Ph2CHO,
XC6H4 (X = CN,  NO2, Ms), XC6H4CH2
(X = Me, Ph,CHO, CO2Me,  F,Cl, Br)

Схема 41

R1

R2
R2

R2
R

F F

SAr

77 78

Ar
S

F

R

R52-84%

R

O O

Ph

ArS

F

IF5-Py-HF

CH2Cl2 or (CH2Cl)2 ,rt or 80°C

Ar = 4-XC6H4 (X = Me, MeO, Cl)

R = Et, n-Pr, t-Bu, Ph, PhCH2,
PhCO, CO2Et, EtCO2CMe2;
R1 = H, SAr
R2 = H, Et, n-Pr, Ph(CH2)2
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Схема 42

R1

R1

N

Boc Ar

N

O

F

O
Ar41–83%

S
Ph;

79 80

7, AgSbF5

CH2Cl2, 55°C, 3.5 h

CH2

CO2Et
R1 = XC6H4 (X = Me, MeO, CO2Me, F, Br, c-Pent, Ph);

Ar =  XC6H4 (X = Me, Ph,CF3, MeO),
2-thiophenyl, 3-thiophenyl, 3-furyl

Схема 43

N

O

Ph

F

O

Ph

N

O

Ph

O

Ph

H N

O

Ph

O

AgF2

Схема 44

R1
R1

R2
R2

R3R3HO
O F

81 8274–99%

Selectfluor,  AgNO3 or Fe(acac)3

CH2Cl2/H2O, rt, 24 h

R1 = Me, Ph, Bn, (CH2)2Ph, (CH2)2Cl, (EtO)2CH2,
XC6H4 (X = H, Me,CF3, MeO, MeCO2, Br), 2-naphtyl
R2 =H,  Me, Et, Bn, Ph
R3 = H, Me

Схема 45

R1

R1

R1

R1
R2

R2
R2

R2

R3

R3
R3

R3

Cl

F
N

Cl

Ag(I )

F-Ag(II)

O

O

O F

N+N+

N+

HO

F=Ag(III)
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Схема 46

R

OH

O

R

FSelectfluor

67–98%83 84

MeNO2, rt

R = XC6H4 (X = H, Me, t-Bu, MeO, F, Cl), 2-naphtyl

Схема 47

BF4
‒2BF4

‒ 2BF4
‒

R

F F

R R

O-H

F
O

R
F

N

CH2Cl CH2Cl CH2Cl

N+

N+
N+

N+ N+

OHOH

Схема 48

R1

R2

X
n X

N

R2

F

n

32–98%
85

86

Selectfluor, AcOH

MeCN, rt, 6–8 h

NHR1

n = 1, 2;    X = H, Me, F, Cl, Br
R1 = Ts, Ms, Bs, SO2Ph, SO2Bn  
R2 = Me, Et, n-Bu, n-C12H25, c-Pe, c-Hex, Ph
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Фторирование производного анилина 87 в амид 
88 под действием реагента Selectfluor осуществляет-
ся с 1,3-миграцией группы RCO (R = Me, Ar) (схе-
ма 50). Предполагаемый механизм реакции вклю-
чает образование комплекса с переносом заряда S1 
между донором и реагентом Selectfluor, за которым 
следует одноэлектронный перенос, в результате 

образуется катион-радикальная и анион-ради-
кальная пара S2, а далее осуществляется 1,3-ми-
грациия группы RCO внутри клетки (схема 51).  
Расчеты методом B3LYP/6-311++G(d,p) с учетом 
сольватации в рамках модели PCM указывают на 
предпочтительность орто-фторирования [63].

Схема 49

F

F
N
Ts

F

SET F

NHTs

NHTs

NHTs NHTs

–H+

Схема 50

X
O

R

X

N
H

O

R

F

Selectfluor

13–73%
87

88

NH2

MeCN, 40°C, 4 h

R = Me, YC6H4 (Y = Me, F, Cl, Br, OBn)
X = H, Cl, Br, NO2

Схема 51

O

Ph

O

Ph

F

Ph

O

F F

NH

OH

Ph

N
H

O

Ph

F

S1

SET

F

O

Ph

F

N

S2

N–NH2

NH2

NH2 NH2

N+

N+

–H+

–H+

H+/F+

H+
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ФТОРИРОВАНИЕ  
С СЕМИПИНАКОЛИНОВОЙ  

И ЕЙ ПОДОБНЫМИ  
ПЕРЕГРУППИРОВКАМИ

Фторирование, сопровождаемое семипинако-
линовой перегруппировкой, представляет собой 
простой метод получения фторированных кетонов, 
которые находят широкое практическое примене-
ние в качестве функциональных материалов. 

Разработан трехкомпонентный метод синтеза 
фторамидов 89 из альдегидов 90 действием аминов 
n-BuR2R3N и реагента Me3SiF2Br, который являет-
ся источником дифторкарбена (схема 52). Предпо-

ложительный механизм включает миграцию атома 
фтора (схема 53) [64]. 

С использованием катализатора 91, реагента 
Selecfluor и Na3PO4 осуществлено первое энантио-
селективное фторирование аллильных спиртов 92, 
сопровождаемое семипинаколиновой перегруппи-
ровкой, с образованием фторспирокетонов 93. Ре-
акция идет с высокими выходами и энантиоселек-
тивностью (dr > 20 : 1) (схема 54) [65, 66].

Фторирование гидроксициклобутанов 94 
фторйоданом 7 дает фторциклопентаноны 95 в 
мягких условиях и с высоким выходом (схема 55). 
Предполагаемый механизм включает миграцию 

Схема 52

R1

O

H
+ +

R

F

O

O

O

32–96%
8990

S

S

O
; ;

n-BuR2R3N Me3SiCF2Br
KF,

25 → 100°C
NEt2

R1 = i-PrCH2, t-BuCH2, i-BuCH2, Hex, c-Hex, c-Pent, t-BuCH2,
          XC6H4 (X = H, Me, Et, i-Pr, t-Bu, CF3, OMe,
         OPh, OBn, SMe, O(CH2)3OMe, F,Cl, Br,I),  
         2-tiophenyl
R2, R3 = Me, Et, (CH2)5, (CH2)7, (CH2)2Ph

Схема 53

O

F F

O

F

O

F
SiMe3

N(R2)2

N(R2)2

N(R2)2

R1 R1 R1

Схема 54

X

R

OH

X

R

O

F

92 93

84–95%

R

R

R

R R

R

P
O
OH

n
n

Selectfluor, 91

Na3PO4 –20°C, 48–72 h
PhF/n-Hexane

n = 0, 1, 2
X = O, CH2
R = H, Me, MeO, F, Cl, c-Pr

R = c-C5H10  (91)
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арильной группы и расширение цикла (схема 56) 
[67].

Реакция фторирования производных 2-алкили-
денциклобутанола 96 гипервалентным йодом(III) 

с использованием нуклеофила Py·HF в качестве 
источника фтора идет с сокращением цикла че-
рез семипинаколиновую перегруппировку и дает 
β-фторированные циклопропанкарбальдегиды 97 
(схема 57) [68].

Схема 55

R1R1

R2

HO

OI
F

Me

Me

7

94

O
F

95

O

O, ,

70–96%

AgBF4,CH2Cl2, 8 h, rt CH2R2

R1 =  H, t-BuC6H4, Ph

R2 = XC6H4 (H, Me, t-Bu, c-Hex, Ph, MeO, F, Cl),
         2-naphtyl.

Схема 56

O

F

ArI

F

F

F

Ph

7
–IAr

–H+

OH

HO HO HO

CH2Ph

Схема 57

X

F

X

O

H

96 9713‒72%

OH

(PhIO)n, Py-HF

PhMe, 0°C, 5 min

X = Me, CF3, CN, CO2Me, CO2Et, F, Cl, Br
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Асимметрическое фторирование аллильных 
спиртов 98, катализируемое производным хинно-
го алкалоида 99, сопровождается семипинаколи-
новой перегруппировкой (схема 58). Кетоны 100 
были получены с умеренными выходами и со зна-
чениями ee от умеренных до высоких [69].

ФТОРИРОВАНИЕ С ПЕРЕГРУППИРОВКОЙ 
МЕЗЕНГЕЙМЕРА

При действии на триптофаны 101 2,4,6-триме-
тил-1-фторпиридиний трифлата образуются фтор-
гексагидропирролоиндолы 102a, b. При действии 

на них мета-хлорнадбензойной кислоты идет пере-
группировка Мезенгеймера с образованием фтор-
пирролобензоксазинов 103a, b с высокой диасте-
реоселективностью (син-цис/анти-цис > 8.5 : 1.5).
(схема 59) [70].

ФТОРИРОВАНИЕ С ПЕРЕГРУППИРОВКОЙ, 
АНАЛОГИЧНОЙ ПЕРЕГРУППИРОВКЕ  

МЕЙЕРА–ШУСТЕРА

Фторированные соединения, содержащие диф-
тораллильные фрагменты, используются как пре-

Схема 58

R1
R1

R1R1

R2
R2 R2

R2

OH
O O

O

F

62

29–73%98 100

N

MeO

N

Et

N

Et

N

OMe

O O

N N

Ph

Ph

99

n n

NFSI, K2CO3

ClCH2CH2Cl
–10°C

ee 36–90%

R2 = H, Me

n = 0, 1; R1 = XC6H4 (X = H, F, Cl, Br), 2-naphthyl, 2-tienyl

Схема 59

N+

N

N

H

N

F

H

H

F

N

F

H

H

+

Cl
F

H

H

O–
N O

F

H

H
N O

F

H

H+

103a 103b

101 40‒77% 102a 102b

63‒97%

COOR

COOR

COOR COOR

COOR COOR
MH-Boc

Me

Me Me Me

Me

Me

Me

Me Me

N-Boc

N-Boc

N-Boc N-Boc

N-Boc

CF3SO2
‒

THF, 65‒70°C

CO3H

CH2Cl2, 0°C

R = Me, Bn

R = Me, Bn, Allyl, t-Bu
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Схема 60

R

F
N OO

I
R

F F

I
103104

ON
O

O

O

O
O

Br O

O
N

N

O

O
N

O

, ,

,

,

31‒92%

O

O

S

O
,

R = X(CH2)n (n = 1, 2, 4, 5, 7, 11) X = Me, Ph, c-Hex,
CN, F, Cl, Br, N3, NO2, COOH, OBz, PhO2S;
XC6H4 (X = CF3, CN, CO2Me, c-HexOCO,
(CF3)2COH, CF3SO3, NO2);

HOEt2  ∙ BF4,  Ph2S,+ ‒

CHCl3, rt ‒60°C, 12‒24 h

PhO2S

Br

Br

Br

Схема 61

‒BF3

BF4
‒

BF4
‒

BF4
‒

H+

S+

F

R F

I
NIS

N

O

O

I

N

O

O

H
Ar Ar

I
F

R

F
R

F

R

F

I

F

R

I

B
F

F
F

F

F

R

I

F

+

F

R I

B F

F

F

F
F

a

b

105

BF3

BF3

HBF4OEt2

PhSPh
NIS,

OEt2

+HBF4OEt2

SAr2SAr2
Ar = Ph or 4-IC6H4

(4-IC6H4)2S
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курсоры для синтеза широкого спектра других 
фторсодержащих соединений. 

Разработан подход, основанный на перегруп-
пировке, аналогичной перегруппировке Мейера–
Шустера, для синтеза йодированных аллильных 
дифторидов 103 действием HOEt2·BF4 и Ph2S в 
присутствии 1-йодпирролидин-2,5-диона на про-
паргиловые фториды 104 (схема 60). Предложено 
2 варианта превращения образующихся в реакции 
аллильных 1,3-дифторидов 105: ступенчатый ме-
ханизм с превращением аллильных карбкатионов 
(путь а) или согласованный механизм (путь b) (схе-
ма 61). Однако выбор между этими вариантами не 
был осуществлен [71]. 

ФТОРИРОВАНИЕ  
С АЗА-ПЕРЕГРУППТРОВКОЙ КЛЯЙЗЕНА

Система Fe(OTf)3–Selectfluor позволяет про-
вести превращение 1-алленилиндолов 106 в 
2-алленил-3,3-дифториндолы 107 в результате 
аза-перегруппировки Кляйзена (схема 62) [72]. 
Фторирование алленилиндола 106 (R1 = Ph, R2 = H) 

может также катализироваться солями PtCl2, InCl3 
и HfCl4, однако выходы дифторида 107 (R1 = Ph,  
R2 = H) несколько ниже (63–71% против 81%). Ис-
пользование в качестве катализатора (Ph3P)AuNTf2 
дало дифторид 107 (R1 = Ph, R2 = H) с выходом 83%, 
что близко к таковому при использовании Fe(OTf)3 
(выход 81%). Предположительно ключевой стадией 
аза-перегруппировки Кляйзена является миграция 
алленовой группы, связанной с фрагментом MLn , 
где М – металл (схема 63) [72]. 

ФТОРИРОВАНИЕ  
С ПЕРЕГРУППИРОВКОЙ БЕКМАНА

Фторирование 1-(пиридинил-4)этанонок-
сима (108) системой трифторид диэтилами-
носеры−тетрагидрофуран (DAST−THF) дает 
N-(пиридинил-4)ацетамид (109) с выходом 
72% (схема 64). По-видимому, протонирование  
по атому азота интермедиата T увеличивает спо-
собность уходящей группы к отщеплению и об-
легчает осуществление перегруппировки Бекмана 
(схема 65). После гидролиза продукт не содержит 
атом фтора [73].

Схема 62

R1 R1

R2
R2

N N
H

F
F

40‒97%106 107

Selectfluor, Fe(OTf)3

NaHCO3, MeCN, rt, 0.5 h

R2 =  H, Me, MeO, CN, F, NO2

R1 = 4-XC6H4(X = H, Me, t-Bu, F, Cl), 2-naphtyl

Схема 63

R1 R1

R2
R2

N N
H

F
F

F F

MLn

‒MLn + H+
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ФТОРИРОВАНИЕ С МИГРАЦИЕЙ  
МЕТАЛЛООРГАНИЧЕСКОЙ ГРУППЫ  

ИЛИ МЕТАЛЛА

Разработан метод катализируемого Pd(OAc)2 ре-
гиоселективного арилфторирования хроменов 110. 
Соотношение образующихся при фторировании 

продуктов 1,3- и 1,2-присоединения 111, 112 зави-
сит от природы лиганда L и арильных групп Ar, Ar' 
(схема 66). Предполагалось, что 1,3-продукт обра-
зуется в результате миграции палладиевого фраг-
мента с последующим образованием связи C–F , а 
продукт 1,2-арилфторирования – в результате ми-
грации Ar' в палладиевом комплексе (схемы 67, 68). 

Схема 64

Ar R

N
Ar

H
N

O

R

108 10942‒97%

OH

1. DAST, CH2Cl2, ‒20°C, 20 min

2. H2O

Ar = XC6H4 (X = H, MeO, NHBoc, NO2)
2-naphtyl, Py
R = Me, i-Pr, Bn, Ph, (CH2)3XMe (X = O, CH2)

Схема 65
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F
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Схема 66

R1R1

O
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H
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+

O
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H

Ar

F O
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H

Ar F

+

76 77 78

N N

R R

L =

N N

N N

O

N N

O

32‒62%

Ar'B(OH)2

Selectfluor, Pd(OAc)2, L,

(RO)2PO2H, CH2Cl2-H2O,
rt, 24 h

Ar'

Ar'

Ar = XC6H4(X = H, Me, MeO, AcO, F,Cl, Br)
Ar' = XC6H4(X = H, Me, MeO, CF3,CO2Me,  F, Cl, Br)
R = 2-Ethexyl

R = t-Bu, MeO, CHO, Br R1 = H, Ph, MeO
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Наивысшая селективность по 1,3-арилфторирова-
нию (32 : 1) достигнута при использовании в ка-
честве лиганда 4,4'-диметокси-2,2'-бипиридина и  
Ar' = 3-MeCO2C6H4. Обнаружено, что при увеличе-
нии электроноакцепторной способности замести-

теля в арильной группе Ar'B(OH)2 относительная 
доля 1,3-продукта возрастает [74]. 

Разработан катализируемый Pd(OAc)2 ме-
тод синтеза изомерных арилфтордифенил-
циклопентанкарбоксамидов 113, 114. Фто-

Схема 67
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Схема 68
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рирование осуществлено действием реагента 
Selectfluor и арилборной кислоты на N-метил-2-
фенилциклопентен-3-карбоксамид (115) в при-
сутствии лиганда L. Образование изомера 114 осу-
ществляется, вероятно, вследствие диотропной 
перегруппировки палладиевого комплекса 116 
(стадия a, схема 69) [75].

Фторированные хроманы 117 синтезированы 
действием реагента Selectfluor в присутствии ка-
талитических количеств Pd(dba)2 и 4,4'-дитретбу-
тил-2,2'-бипиридина (118) на арилборные кислоты 
119 (схема 70). Использование меченного дейтери-

ем модельного соединения 120 позволило предло-
жить механизм реакции, включающий диотроп-
ную перегруппировку интермедиата U (стадия a, 
схема 71) [76].

Фторирование амидов 121 реагентом Selectfluor, 
катализируемое Pd(OAc) в 1,1,1,3,3,3-гексафтор-
пропаноле-2 (HFIP), идет с образованием произво-
дных 122 с миграцией арильной группы (схема 72).  
Согласно данным расчетов DFT, перегруппировка 
идет через переходное состояние V [77].

Предложен катализируемый AgNO3 синтез 
4-фторбензо[b][1,6]нафтиридинов 123 в результате 

Схема 69
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Схема 70

O

R

O

R

F

119 11716–55%

X X

B(OH)2 Selectfluor, Pd(dba)2, 118,
Na3PO4, 5Å MS

(CH2Cl)2, 80°C, 24 h

R = Me, Et, n-Bu, (CH2)2OMe
      F,Cl, N3)
      (CH2)3R1 (R1 = CN, OMe, OBn, C5H10NCO,
X = H, Me, t-Bu, Ph, CF3, t-BuCO, OMe, OCF3,Cl),
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иминофторирования реагентом Selectfluor о-алки-
нилхинолинилов 124, генерируемых in situ из аль-
дегидов 125 (схема 73). Предполагаемый механизм 
реакции включает превращение π-комплекса W1 
в σ–комплекс W2 с последующим фторированием 
реагентом Selectfluor (схема 74) [78].

1,3-Ацилоксиперегруппировка пропаргила-
цетатов 126 в присутствии реагента Selectfluor и 
i-PrAuNTf2 идет с образованием связи C(sp2)–F и 
включает окислительно-восстановительный ката-
литический цикл Au(I)/Au(III) (схемы 75, 76) [79].

Эффективный синтез фторированных индолов 
128 достигнут через катализируемую Ag2CO3 схему 
циклизация–фторирование 2-алкиниланилинов 
129 под действием NFSI (схема 77) [80].

Разработан новый метод получения 3-фторок-
синдолов 130 циклизацией и фторированием ре-
агентом Selectfluor диазоацетамидов 131 в присут-
ствии [Ru(p-cymene)Cl2]2 (схемы 78, 79) [81].

ФОТОКАТАЛИТИЧЕСКОЕ ФТОРИРОВАНИЕ 
С ПЕРЕГРУППИРОВКАМИ

Фотокаталитическое фторирование является 
одним из перспективных методов синтеза фто-
рорганических соединений [82–84]. При фотока-
тализе происходит поглощение кванта света ката-
лизатором, а не субстратом. Фотокаталитический 
процесс может включать либо восстановитель-
ный одноэлектронный перенос электрона (SET) 
с катализатора на субстрат, либо обратный окис-
лительный SET. При этом образуются катионы, 
катион-радикалы или радикалы, которые могут 
подвергаться перегруппировкам.

Разработан фотокаталитический метод превра-
щения удаленной связи С–Н в амидах 132 в связь 
C–F с образованием фторзамещенных амидов 133 
(схема 80). Предложен механизм окислительного 
образования амидиловых радикалов X1 с их пре-
вращением в результате 1,5-сдвига атома водорода 
в радикалы X2 и последующим фторированием по-
следних реагентом Selectfluor (схема 81) [85].
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Схема 74
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Схема 76

R1

R1

R1R1

R1

R1 R1
R1

O

F

R R

O

R R

2

O

R R

F O

R R

O

H

R R

R
R

OO

R
R

OO
R

R

O O

Selectfluor

+

[Au(I)+

H+

AcOH,
NaHCO3

[Au+[Au+

H2O

[Au(I)+

[Au(III)+

Схема 77

N

F F

R2

N
H

N
H

F

128129 60–81%

NH2

R1
Ag2CO3, NFSI

1,4-dioxane, 60°C

R2

R2

AgI

AgI

AgI

R1 R1 R1

R1

R2 R2

“F+”

“F+”

NH2

R1 = H, Me, Cl, Br
R2 = XC6H4 (X = H, Me, MeO, Ac F, Cl), 1-naphtyl, 2-thionyl



38 Бородкин

ЖУРНАЛ  ОРГАНИЧЕСКОЙ  ХИМИИ № 1 2025том 61

Схема 78
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Схема 81
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Схема 83

HN

O

R

HN

O

R

O

R

Y

HN

O

RF

N

Cl Cl Cl

F

H

hn

Ph2CO*

Ph2CO

–H+ H2O

N+

N+

N+

N+N+

N+

Ph2CO

OH

Схема 84

N

Me

Me

O

Me

Me

NC

F

Me

Me N

138

N

Me

Me
NC

Me

Me

136 13784%

Selectfluor, 138, hν

MeCN-H2O, RT, 15 min

CO2H
Mes

Me

ClO4
–



41ФТОРИРОВАНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ЖУРНАЛ  ОРГАНИЧЕСКОЙ  ХИМИИ № 1 2025том 61

Разработан однореакторный метод фотохими-
ческой трансформации циклопропиламидов 134 
во фторированные амиды 135 при использовании 
бензофенона в качестве фотокатализатора (схема 
82). Предполагается, что раскрытие циклопропа-
нового фрагмента осуществляется в результате пе-
регруппировки катион-радикала Y с последующим 
фторированием последнего (схема 83) [86].

Фотокаталитическое превращение оксима 136 в 
фторированный нитрил 137 осуществляется, оче-

видно, с перегруппировкой иминильного радикала 
(схема 84) [87]. 

Одноэлектронное окисление метиленцикло-
пропанов 139 дает арил-1,4-дигидронафталины 
140 в результате фотоокислительно-восстанови-
тельного катализа в присутствии кобальтового ка-
тализатора и Et3N·3HF (схема 85). Предполагаемый 
механизм включает стадию изомеризации радика-
ла Z (схема 86) [88].

Схема 85

F

36–55%
139 140

R2

R1

R2R1

R1, R2 = H, Me, MeO, F, Cl, Br

138, hν, Co(dmgH)2 PyCl

Et3N ∙ 3HF, MeCN

Схема 86

F‒

H+

–H+

H+

Ph

Ph Ph

Ph

Ph

Ph

F

Ph

Ph

FLCoI

FPh

H

FPh

H

FPh

+

Z1 Z2

LCoIII-H
LCoII

H2

PS+*

PS+

hν
PS



42 Бородкин

ЖУРНАЛ  ОРГАНИЧЕСКОЙ  ХИМИИ № 1 2025том 61

ЗАКЛЮЧЕНИЕ

Представлены обобщенные сведения о состоя-
нии исследований в области фторирования органи-
ческих соединений с вовлечением молекулярных 
перегруппировок. Электрофильное и окислитель-
ное фторирование органических соединений часто 
происходит с образованием катионов, ион-радика-
лов и радикалов, которые являются внутренне не-
устойчивыми частицами и подвержены перегруп-
пировкам. Различные перегруппировки позволяют 
расширить круг синтезируемых продуктов, кото-
рые иногда трудно получить прямым фторирова-
нием. Для предсказания направления таких реак-
ций необходимо детальное изучение их механизма, 
включая квантово-химические расчеты. 
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This literature review focuses on electrophilic and oxidative fluorination of organic compounds accompanied 
by molecular rearrangements. Special attention is given to the reaction mechanisms and selectivity issues.
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