RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

Dynamic Structure of Organic Compounds in Solution According to NMR Data and Quantum Mechanical Calculations. V. Substituted Benzalanilines

PII
S30346304S0514749225010039-1
DOI
10.7868/S3034630425010039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
55-68
Abstract
We investigated the dynamic structure of benzalaniline derivatives, in which an important factor is the inhibited internal rotation of benzene rings. The parameters of conformational processes of this type are characterized based on NMR spectroscopy data and quantum mechanical calculations. In these compounds, nitrogen atoms play a key role. It has been shown that important information is provided by NMR parameters with the direct participation of nitrogen, which become available in experiments with 15N-enriched compounds. Important new information about the conformation of molecules of this class can be provided by the spin-spin interaction constants involving 15N nuclei. A series of [15N]enriched benzalaniline derivatives with substituents in the ortho position of the benzene ring distant from the nitrogen was studied. It has been shown that substituents can act as both a stabilizing (R = F, OH, OCH3) and a destabilizing factor (R = CH3). The influence of medium acidity on these conformational equilibria was studied. This type of structural motif can be used to design pH-induced molecular switches. According to our estimates, the molecular switching energy of [15N]-2-fluorobenzalaniline is ~7 kcal/mol, which is one of the highest values for molecular switches of this type.
Keywords
бензилиденанилин 15N-обогащенные соединения КССВ 15N–13C динамическая структура молекул конформационные равновесия молекулярные переключатели
Date of publication
07.12.2025
Year of publication
2025
Number of purchasers
0
Views
103

References

  1. 1. Станишевский В.В., Шестакова А.К., Чертков В.А., ЖОрХ, 2023, 59 (8), 1012–1024. doi 10.31857/S0514749223080025
  2. 2. Шестакова А.К., Станишевский В.В., Чертков В.А., Химия гетероцикл. Соединений, 2023, 59 (9/10), 657–665. doi 10.1007/s10593-023-03251-6
  3. 3. Cheshkov D.A., Sinitsyn D.O., Sheberstov K.F., Chertkov V.A., J. Magn. Reson., 2016, 272, 10–19. doi 10.1016/j.jmr.2016.08.012
  4. 4. Cheshkov D.A., Sheberstov K.F., Sinitsyn D.O., Chertkov V.A., Magn. Reson. Chem., 2018, 56 (6), 449–457. doi 10.1002/mrc.4689
  5. 5. Martin G.E., Williams A.J., eMagRes., 2010, 1–42. doi 10.1002/9780470034590.emrstm1083
  6. 6. Stanishevskiy V.V., Shestakova A.K., Chertkov V.A., Appl. Magn. Reson., 2022, 53, 1693–1713. doi 10.1007/s00723-022-01503-w
  7. 7. Schneider H.-J., Molecules. 2024, 29, 1591–1603. doi 10.3390/molecules29071591
  8. 8. Muzalevskiy V.M., Mamedzade M.N., Chertkov V.A., Bakulev V.A., Nenajdenko V.G., Mendeleev Commun. 2018, 28 (1), 17–19. doi 10.1016/j.mencom.2018.01.003
  9. 9. Muzalevskiy V.M., Sizova Z.A., Panyushkin V.V., Chertkov V.A., Khrustalev V.N., Nenajdenko V.G., J. Org. Chem. 2021, 86, 2385–2405. doi 10.1021/acs.joc.0c02516
  10. 10. Schneider H-J., Angew. Chem. Int. Ed., Engl. 1991, 30, 1417–1436. doi 10.1002/anie.199114171
  11. 11. Merino E., Ribagorda, Beilstein M., J. Org. Chem. 2012, 8, 1071–1090. doi 10.3762/bjoc.8.119
  12. 12. Ni X., Liang Z., Ling J., Li X., Shen Z. Polym. Int. 2011, 60, 12, 1745–1752. doi 10.1002/pi.3145
  13. 13. Meister E.C., Willeke M., Angst W., Togni A., Walde P. Helv. Chim. Acta. 2014, 97 (1), 1–31. doi 10.1002/hlca.201300321
  14. 14. Foresman J.B., Frisch A., “Exploring Chemistry With Electronic Structure Methods”, 3rd edition 2015, “Gaussian Inc.”, Pittsburgh, 354 p. ISBN: 978-1-935522-03-4
  15. 15. Frisch M.J., Trucks G.W., Schlegel H.B., Scuser G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., “Gaussian 09W, Revision A.02”, Gaussian, Inc., Wallingford, 2009.
  16. 16. Samoshin V.V., Brazdova B., Chertkov V.A., Gremyachinskiy D.E., Shestakova A.K., Dobretsova E.K, Vatlina L.P., Yuan J., Schneider H.-J., ARKIVOC. 2005, 4, 129–141. doi 10.3998/ark.5550190.0006.410
  17. 17. Samoshin V.V., Chertkov V.A., Gremyachinskiy D.E., Shestakova A.K., Dobretsova E.K., Vatlina L.P., Schneider H.-J., Tetrahedron Lett. 2004, 45, 7823–7826. doi 10.1016/j.tetlet.2004.09.004
  18. 18. Samoshin A.V., Veselov I.S., Huynh L., Shestakova A.K., Chertkov V.A., Grishina G.V., Samoshin V.V. Tetrahedron Lett. 2011, 52 (41), 5375–5378. doi 10.1016/j.tetlet.2011.08.038
  19. 19. Wang Z., Islam M.J., Vukotic V.N., Revington M.J, J. Org. Chem., 2016, 81 (7), 2981–62981. doi 10.1021/acs.joc.6b00250
  20. 20. Gunther H., NMR Spectroscopy, Basic principles, concepts and applications in chemistry, 3rd edn., Weinheim: Wiley-VCH 2013. ISBN 978-3-527-33000-3.
  21. 21. Kaupp M.B., Malkin V.G., Calculation of NMR and EPR parameter. Theory and applications, Weinheim: Wiley-VCH 2004.
  22. 22. Claridge T.D.W., High-resolution NMR techniques in organic chemistry, 3rd edn., Oxford: Elsevier Science 2016. ISBN 978-0-08-099986-9.
  23. 23. Berger S., Braun S., 200 and more NMR experiments: a practical course, Oxford–Weinheim: Wiley-VCH 2004. ISBN 3-527-31067-3.
  24. 24. Chertkov V.A., Shestakova A.K., Davydov D.V. Chem. Heterocycl. Compd. 2011, 47, 45–54. doi 10.1007/s10593-011-0718-z
  25. 25. Uvarov V.A., Chertkov V.A., Sergeyev N.M. J. Chem. Soc. Perkin. Trans. II. 1994, 2, 2375–2378. doi 10.1039/P29940002375
  26. 26. Morgan W.D., Birdsall V, Nieto P.M., Gargaro A.R., Feeney J. Biochemistry. 1999, 38, 2127–2134. doi 10.1021/bi982359u
  27. 27. Williamson R.T., Buevich A.V., Martin G.E. Tetrahedron Lett. 2014, 55, 3365–3366. doi 10.1016/j.tetlet.2014.04.060
  28. 28. Deng W., Cheeseman J.R., Frisch M.J. J. Chem. Theory Comput. 2006, 2, 1028–1037. doi 10.1021/ct600110u
  29. 29. Программный комплекс ChemSketch 6.0, AcdLabs, 2025
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library