- PII
- S30346304S0514749225040011-1
- DOI
- 10.7868/S3034630425040011
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 4
- Pages
- 353-363
- Abstract
- The efficiency of copper-containing metal-organic coordination polymers (Cu-MOFs) and commercially available non-immobilized copper nanoparticles (CuNPs) in the amination of 2-iodopyridine, 2-bromopyridine and its trifluoromethyl derivatives with -octylamine and adamantane-containing amines with different steric hindrances at the amino group was compared. The yields of the amination products under optimized conditions were shown to be close for both catalytic systems. To achieve good yields in the case of 2-bromopyridine, an increase in the concentration of reagents and the use of 2 equiv. of haloarene are required, while the introduction of a trifluoromethyl group at position 6 of the pyridine ring improves the yields of the amination products. Increasing steric hindrances at the amino group leads to a noticeable decrease in the yields of products in the Cu-MOF catalyzed reactions. However, the use of CuNPs allows for successful reactions with such amines, and CuNPs of 25 nm average size demonstrated an advantage over bifractional nanoparticles of 10/80 nm. On the other hand, increasing the concentration of reagents in the Cu-MOF catalyzed reactions provides good yields of the target compounds without addition ligands.
- Keywords
- аминирование пиридин галогенарены амины адамантан наночастицы меди металлорганические координационные полимеры
- Date of publication
- 13.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 23
References
- 1. Chui S.S.-Y., Lo S.M.-F., Charmant J.P.H., Orpen A.G., Williams I.D. Science. 1999, 283, 1148–1150. doi 10.1126/science.283.5405.1148
- 2. Tian T., Zeng Z., Vulpe D., Casco M.E., Divitini G., Midgley P.A., Silvestre-Albero J., Tan J.C., Moghadam P.Z., Fairen-Jimenez D. Nat. Mater. 2018, 17, 174–179. doi 10.1038/nmat5050
- 3. Mu X., Chen Y., Lester E., Wu T. Microporous Mesoporous Mater. 2018, 270, 249–257. doi 10.1016/j.micromeso.2018.05.027
- 4. Mahmoud E., Ali L., El Sayah A., Alkhatib S.A., Abdulsalam H., Juma M., Al-Muhtaseb A.H. Crystals. 2019, 9, 406. doi 10.3390/cryst9080406
- 5. Yepez R., Garcia S., Schachat P., Sanchez-Sanchez M., Gonzaґlez-Estefan J.H., Gonzalez-Zamora E., Ibarra I.A., Aguilar-Pliego J. New J. Chem. 2015, 39, 5112–5115. doi 10.1039/C5NJ00247H
- 6. Liu Y., Wang S., Wu X., Zhao Y., Lu Y., Zhang Y., Xu G., Zhang J., Guo Z., Chen X. Microporous Mesoporous Mater. 2019, 279, 228–233. doi 10.1016/j.micromeso.2018.12.039
- 7. Ганина О.Г., Бондаренко Г.Н., Исаева В.И., Кус-тов Л.М., Белецкая И.П. ЖОрХ 2019, 55, 1813–1820. @@Ganina O.G., Bondarenko G.N., Isaeva V.I., Kustov L.M., Beletskaya I.P. Russ. J. Org. Chem. 2019, 55, 1813–1820. doi 10.1134/S1070428019120017
- 8. Han S., Ciufo R.A., Wygant B.R., Keitz B.K., Mullins C.B. ACS Catal. 2020, 10, 4997–5007. doi 10.1021/acscatal.0c00592
- 9. Fan S., Dong W., Huang X., Gao H., Wang J., Jin Z., Tang J., Wang G. ACS Catal. 2017, 7, 243–249. doi 10.1021/acscatal.6b02614
- 10. Llabrés i Xamena F.X., Casanova O., Tailleur R.G., Garcia H., Corma A. J. Catal. 2008, 255, 220–227. doi 10.1016/j.jcat.2008.02.011
- 11. Luz I., Leon A., Boronat M., Llabres i Xamena F.X., Corma A. Catal. Sci. Technol. 2013, 3, 371–379. doi 10.1039/C2CY20449E
- 12. Qi Y., Luan Y., Yu J., Peng X., Wang G. Chem. Eur. J. 2015, 21, 1589–1597. doi 10.1002/chem.201405685
- 13. Kargar P.G., Aryanejad S., Bagherzade G. Appl. Organomet. Chem. 2020, 34, e5965. doi 10.1002/aoc.5965
- 14. Cai J., Zhuang Y., Chen Y., Xiao L., Zhao Y., Jiang X., Hou L., Li Z. ChemCatChem. 2020, 12, 6241–6247. doi 10.1002/cctc.202001140
- 15. Singh R., Singh G., George N., Singh G., Gupta S., Singh H., Kaur G., Singh J. Catalysts. 2023, 13, 130. doi 10.3390/catal13010130
- 16. Zhang X., Qin J., Ma R., Shi L. J. Chem. Res. 2021, 45, 795–799. doi 10.1177/17475198211026506
- 17. Борисова А.С., Кулюхина Д.С., Малышева А.С., Мурашкина А.В., Аверин А.Д., Вергун В.В., Исае-ва В.И., Савельев Е.Н., Новаков И.А., Белецкая И.П. Изв. АН сер. хим. 2024, 73, 3567–3577.
- 18. Murashkina A.V., Kuliukhina D.S., Averin A.D., Abel A.S., Savelyev E.N., Orlinson B.S., Novakov I.A., Correia C.R.D., Beletskaya I.P. Mendeleev Commun. 2022, 32, 91–93. doi 10.1016/j.mencom.2022.01.029
- 19. Murashkina A.V., Averin A.D., Panchenko, S.P., Abel, A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Correia C.R.D., Beletskaya I.P. Russ. J. Org. Chem. 2022, 58, 15–24. doi 10.1134/S107042802201002X
- 20. Fomenko V.I., Murashkina A.V., Averin A.D., Shesterkina A.A., Beletskaya I.P. Catalysts. 2023, 13, 331. doi 10.3390/catal13020331
- 21. Морозов И.С., Петров В.И., Сергеева С.А. Фарма-кология адамантанов. Волгоградская медицинская академия, 2001. 320 с.
- 22. Novakov I.A., Orlinson B.S., Savelyev E.N., Potaenkova E.A., Shilin A.K. Patent RF RU 2495020 C1 2013.
- 23. Gopalan B., Thomas A., Shah D.M. PCT Int. Appl. WO 2006090244 2006; Chem. Abstr. 2006, 145, 292604.
- 24. Averin A.D., Ranyuk E.R., Golub S.L., Buryak A.K., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Synthesis. 2007, 2007, 2215–2221. doi 10.1055/s-2007-983760
- 25. Isaeva V.I., Saifutdinov B.R., Chernyshev V.V., Vergun V.V., Kapustin G.I., Kurnysheva Y.P., Ilyin M.M., Kustov L.M. Molecules 2020, 25, 2648. doi 10.3390/molecules25112648
- 26. Gedye R.N., Bozic J., Durbano P.M., Williamson B. Talanta 1989, 36, 1055–1058. doi 10.1016/0039-9140(89)80194-8
- 27. Abel A.S., Averin A.D., Anokhin M.V., Maloshitskaya O.A., Butov G.M., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ. J. Org. Chem. 2015, 51, 301–308. doi 10.1134/S1070428015030021
- 28. Lyakhovich M.S., Murashkina A.V., Panchenko S.P., Averin A.D., Abel A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P. Russ. J. Org. Chem. 2021, 57, 768–783. doi 10.1134/S1070428021050031
- 29. Lyakhovich M.S., Murashkina A.V., Averin A.D., Abel A.S., Maloshitskaya O.A., Savelyev E.N., Orlinson B.S., Beletskaya I.P. Russ. J. Org. Chem. 2019, 55, 737–747. doi 10.1134/S1070428019060010
- 30. Phan N.T.S., Nguyen T.T., Nguyen K.D., Vo A.X.T. Appl. Catal. A 2013, 464-465, 128–135. doi 10.1016/j.apcata.2013.05.034.