RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

SYNTHESIS AND DETECTING PROPERTIES OF NEW LINEAR AND MACROCYCLIC DERIVATIVES OF O,O'-AMINOBENZYLBINOLs

PII
S30346304S0514749225040062-1
DOI
10.7868/S3034630425040062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 4
Pages
404-421
Abstract
A series of O-halobenzyl and O,O’-di(halobenzyl) derivatives of (S)-1,1’-bi(2-naphthol) (BINOL) was synthesized and their catalytic amination using both palladium and copper catalysts was studied. As a result, a new family of BINOLs was obtained which contain various substituents at oxygen atoms with macrocyclic or linear structure, including those with additional chiral centers. The ability of the obtained compounds for detecting metal cations and enantiomers of model amino alcohols was studied by UV and fluorescence titration methods. A potential fluorescent sensor for Al cations was found in a series of linear derivatives due to a multiple increase in the emission; a fluorescent molecular probe for Hg and Al cations was also proposed. Among macrocyclic derivatives, the compound with the longest trioxadiamine linker can be used as a molecular probe for Mg and Ca cations due to the enhancement of fluorescence with a bathofloral shift of the maximum, as well as for Al and Hg cations due to a strong enhancement of fluorescence without changing the position of the emission maximum.
Keywords
БИНОЛ аминирование катализ комплексами палладия и меди макроциклы флуоресценция хиральность детектирование
Date of publication
15.12.2025
Year of publication
2025
Number of purchasers
0
Views
37

References

  1. 1. Wang X., Jiang Y., Chen Y., Yu Sh., Shi D., Zhao F., Chen Yu, Wang Y., Huo B., Yu X., Pu L., J. Org. Chem. 2020, 85 (7), 4901–4905. doi 10.1021/acs.joc.0c00064
  2. 2. Munusamy S., Kulathu Iyer S., Tetrahedron: Asymmetry. 2016, 27 (11–12), 492–497. doi 10.1016/j.tetasy.2016.05.002
  3. 3. Wang Y., Tian J., Zhao F., Chen Y., Huo B., Yu S., Yu X., Pu L., Tetrahedron Lett. 2021, 66, 152803. doi 10.1016/j.tetlet.2020.152803
  4. 4. Zhang K., Wu S., Qu D., Wang L., Tetrahedron Lett. 2016, 57 (10), 1133–1137. doi 10.1016/j.tetlet.2016.01.101
  5. 5. Munusamy S., Muralidharan V.P., Iyer S.K., Sensors Actuators. 2017, 250, 244–249. doi 10.1016/j.snb.2017.04.169
  6. 6. Zhou Y., Cao Y., Gong G., Zhang Y., Zhao H., Gao X., Zhao G., Inorg. Chem. Commun. 2018, 96, 170–174. doi 10.1016/j.inoche.2018.08.012
  7. 7. Zhao F., Wang Y., Wu X., Yu S., Yu X., Pu L., Chem. Europ. J. 2020, 26, 7258–7262. doi 10.1002/chem.202000423
  8. 8. Nian S., Pu L., J. Org. Chem. 2019, 84 (2), 909–913. doi 10.1021/acs.joc.8b02793
  9. 9. Yang H., Xiang K., Li Y., Li S., Xu C., J. Organometall. Chem. 2016, 801, 96–100. doi 10.1016/j.jorganchem.2015.10.017
  10. 10. Tyszka A., Pikus G., Dąbrowa K., Jurczak J., J. Org. Chem. 2019, 84 (10), 6502–6507. doi 10.1021/acs.joc.9b00630
  11. 11. Wang Y., Liu X., Li H., Liu X., Wang L., Liu Y., Chinese J. Chem. 2022, 40, 2393–2399. doi 10.1002/cjoc.202200243
  12. 12. Zhu Y.-Y., Wu X.-D., Gu S.-X., Pu L., J. Am. Chem. Soc. 2019, 141, 175–181. doi 10.1021/jacs.8b07803
  13. 13. Xu X., Trindle C.O., Zhang G., Pu L., Chem. Commun. 2015, 51, 8469–8462. doi 10.1039/C5CC02457A
  14. 14. Lu K., Guo H., Jiang Y., Yang J., Yu S., Yu X., Pu L., ChemPlusChem. 2023, 88 (3), e202300036. doi 10.1002/cplu.202300036
  15. 15. Shaferov A.V., Malysheva A.S., Averin A.D., Maloshitskaya O.A., Beletskaya I.P., Sensors. 2020, 20 (11), 32–34. doi 10.3390/s20113234
  16. 16. Averin A.D., Grigorova O.K., Malysheva A.S., Shafe-rov A.V., Beletskaya I.P., Pure Appl. Chem. 2020, 92, 1367–1386. doi 10.1515/pac-2020-0205
  17. 17. Iwanek W., Mattay J., J. Photochem. Photobiol., A. 1992, 67, 209–226. doi 10.1016/1010-6030(92)85230-R
  18. 18. Beletskaya I.P., Averin A.D., Russ. Chem. Rev. 2021, 90, 1359–1396. doi 10.1070/RCR4999
  19. 19. Averin A.D., Panchenko S.P., Abel A.S., Maloshitskaya O.A., Butov G.M., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P., Russ. J. Org. Chem. 2017, 53, 1788–1798. doi 10.1134/S1070428017120028
  20. 20. Mao Y., Liu Y., Hu Y., Wang L., Zhang S., Wang W., ACS Catalysis. 2018, 8, 3016–3020. doi 10.1021/acscatal.8b00185
  21. 21. Shaferov A.V., Malysheva A.S., Averin A.D., Grigorova O.K., Buryak A.K., Beletskaya I.P., Russ. Chem. Bull. 2020, 69, 1366–1377. doi 10.1007/s11172-020-2911-7
  22. 22. Malysheva A.S., Shaferov A.V., Averin A.D., Grigorova O.K., Maloshitskaya O.A., Roznyatovsky V.A., Beletskaya I.P., Russ. Chem. Bull. 2020, 69, 1355–1365. doi 10.1007/s11172-020-2910-8
  23. 23. Grigorova O.K., Averin A.D., Maloshitskaya O.A., Beletskaya I.P., Macroheterocycles. 2017, 10, 446–453. doi 10.6060/mhc170937a
  24. 24. Ukai T., Kawazura H., Ishii Y., Bonnet J.J., Ibers J.A., J. Organometall. Chem. 1974, 65, 253–266. doi 10.1016/S0022-328X(00)91277-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library