ОХНМЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

ПРОИЗВОДНЫЕ 5-АРИЛПИРРОЛИДИН-2-КАРБОНОВОЙ КИСЛОТЫ КАК ПРЕДШЕСТВЕННИКИ В СИНТЕЗЕ СУЛЬФОНИЛЗАМЕЩЕННЫХ ПИРРОЛОВ

Код статьи
S30346304S0514749225050026-1
DOI
10.7868/S3034630425050026
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 5
Страницы
526-537
Аннотация
Установлено, что -5-арилпирролидин-2-карбоксилаты, получаемые в реакциях 1,3-диполярного циклоприсоединения из арилальдиминов глицина и винилсульфонов, под действием оксида марганца(IV) подвергаются окислительной ароматизации до соответствующих 5-арил-2-пирролкарбоксилатов с высоким выходом. Определены факторы, влияющие на сохранение сульфонильного заместителя в остове пиррола.
Ключевые слова
1,3-диполярное циклоприсоединение ароматизация оксид марганца(IV) десульфонирование 5-арилпролин 5-арил-1-пиррол-2-карбоксилат
Дата публикации
13.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
43

Библиография

  1. 1. O’Malley D.P., Li K., Maue M., Zografos A.L., Baran P.S. J. Am. Chem. Soc. 2007, 129, 4762–4775. doi 10.1021/ja069035a
  2. 2. Wang X., Gao Y., Ma Z., Rodriguez R.A., Yu Z.-X., Chen C. Org. Chem. Front. 2015, 2, 978–984. doi 10.1039/C5QO00165J
  3. 3. Hughes C.C., Prieto-Davo A., Jensen P.R., Fenical W. Org. Lett. 2008, 10, 629–631. doi 10.1021/ol702952n
  4. 4. Bhardwaj V., Gumber D., Abbot V., Dhimana S., Sharmaa P. RSC Adv. 2015, 5, 15233–15266. doi 10.1039/C4RA15710A
  5. 5. Mohamed M.S., Fathallah S.S. Mini Rev. Org. Chem. 2014, 11, 477–507. doi 10.2174/1570193X113106660018
  6. 6. Bellina F., Rossi R. Tetrahedron. 2006, 62, 7213–7256. doi 10.1016/j.tet.2006.05.024
  7. 7. Sharma V., Bhatia P., Alam O., Naim M.J., Nawaz F., Sheikh A.A., Jhadoi M. Bioorg. Chem. 2019, 89, ID 103007. doi 10.1016/j.bioorg.2019.103007
  8. 8. Dhameja M., Gupta P. Eur. J. Med. Chem. 2019, 176, 343–377. doi 10.1016/j.ejmech.2019.04.025
  9. 9. Masci D., Hind C., Toscani A., Clifford M., Coluccia A., Conforti I., Touitou M., Memdouh S., Wei X., La Regina G., Silvestri R., Sutton J.M., Castagnolo D. Eur. J. Med. Chem. 2019, 178, 500–514. doi 10.1016/j.ejmech.2019.05.087
  10. 10. Raimondi M.V., Listro R., Cusimano M.G., La Francaa M., Faddetta T., Galloa G., Schillaci D., Collina S., Leonchiks A., Barone G. Bioorg. Med. Chem. 2019, 27, 721–728. doi 10.1016/j.bmc.2019.01.010
  11. 11. Knorr L. Ber. Chem. Ges. 1884, 17, 1635–1642. doi 10.1002/cber.18840170220
  12. 12. Paal C. Ber. Chem. Ges. 1885, 18, 367–371. doi 10.1002/cber.18850180175
  13. 13. Hantzsch A. Ber. Chem. Ges. 1890, 23, 1474–1476. doi 10.1002/cber.189002301243
  14. 14. Leonardi M., Estévez V., Villacampa M., Menéndez J.C. Synthesis. 2019, 51, 816–828. doi 10.1055/s-0037-1610320
  15. 15. Tejedor D. González-Cruz D., García-Tellado F., Marrero-Tellado J.J., Rodríguez M.L. J. Am. Chem. Soc. 2004, 126, 8390–8391. doi 10.1021/ja047396p
  16. 16. Cyr D.J., Martin N., Arndtsen B.A. Org. Lett. 2007, 9, 449–452. doi 10.1021/ol062773j
  17. 17. Balakrishna A., Aguiar A., Sobral P.J.M., Wani M.Y., Silva J.A., Sobraldoi A.J.F.N. Catal. Rev. Sci. Eng. 2019, 61, 449–452. doi 10.1080/01614940.2018.1529932
  18. 18. Hati S., Holzgrabe U., Sen S. Beilstein J. Org. Chem. 2017, 13, 1670–1692. doi 10.3762/bjoc.13.162
  19. 19. Feng C., Yan Y., Zhang Z., Xua K., Wang Z. Org. Biomol. Chem. 2014, 12, 4837–4840. doi 10.1039/c4ob00708e
  20. 20. Bonnaud B., Bigg C.H. Synthesis. 1994, 5, 465–467. doi 10.1055/s-1994-25500
  21. 21. Liu Y., Hu H., Wang X., Zhi S., Kan Y., Wang C. J. Org. Chem. 2017, 82, 4194–4202. doi 10.1021/acs.joc.7b00180
  22. 22. Cheruku S.R., Padmanilayam M.P., Vennerstrom J.L. Tetrahedron Lett. 2003, 44, 3701–3703. doi 10.1016/S0040-4039(03)00740-8
  23. 23. Blaney P., Grigg R., Rankovic Z., Thornton-Pett M., Xu J. Tetrahedron. 2002, 58, 1719–1737. doi 10.1016/S0040-4020(02)00029-7
  24. 24. Петров П.С., Калязин В.А., Сомов Н.В. ЖОрХ. 2021, 57, 201–211. doi 10.31857/S0514749221020063
  25. 25. Kudryavtsev K.V., Ivantcova P.M., Churakov A.V., Vasin V.A. Tetrahedron Lett. 2012, 53, 4300–4303. doi 10.1016/j.tetlet.2012.05.160
  26. 26. Casas J., Grigg R., Najera C., Sansano J.M. Eur. J. Org. Chem. 2001, 123, 1971. doi 10.1002/1099-0690(200105)2001:103.0.CO;2-U
  27. 27. Arrieta A., Otaegui D., Zubia A., Cossío F.P., Díaz-Ortiz A., de la Hoz A., Herrero M.A., Prieto P., Foces-Foces C., Pizarro L.J., Arriortua M.I. J. Org. Chem. 2007, 72, 4313–4322. doi 10.1021/jo062672z
  28. 28. Goldman I.M. J. Org. Chem. 1969, 34, 3289–3295. doi 10.1021/jo01263a015
  29. 29. Nájera C., Baldó B., Yus M. J. Chem. Soc., Perkin Trans. 1. 1988, 1029–1032. doi 10.1039/P19880001029
  30. 30. Fu J., He Z., Wang H., Liang W., Guo C. J. Min. Sci. Technol. 2010, 20, 877–881. doi 10.1016/S1674-5264(09)60299-4
  31. 31. Sheldrick G.M. Acta Cryst. Sect. A. 2015, 71, 3–8. doi 10.1107/S2053229614024218
  32. 32. Hübschle C.B., Sheldrick G.M., Dittrich B. J. Appl. Cryst. 2011, 44, 1281–1284. doi 10.1107/S0021889811043202
  33. 33. Clark R.C., Reid J.S. Acta Cryst. 1995, A51, 887–897. doi 10.1107/S0108767395007367
  34. 34. Farrugia L.J. J. Appl. Cryst. 2012, 45, 849–854. doi 10.1107/S0021889812029111
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека