RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

Fluorination of Organic Compounds Accompanied by Molecular Rearrangements

PII
S30346304S0514749225010017-1
DOI
10.7868/S3034630425010017
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
5-44
Abstract
This literature review focuses on electrophilic and oxidative fluorination of organic compounds accompanied by molecular rearrangements. Special attention is given to the reaction mechanisms and selectivity issues.
Keywords
фторирование перегруппировка органические соединения селективность механизм реакции
Date of publication
01.01.2025
Year of publication
2025
Number of purchasers
0
Views
125

References

  1. 1. Zhou Y., Wang J., Gu Z., Wang S., Zhu W., Aceña J.L., Soloshonok V.F., Izawa K., Liu H. Chem. Rev. 2016, 116, 422–518. doi 10.1021/acs.chemrev.5b00392
  2. 2. Lowe P.T., O’Hagan D. Chem. Soc. Rev. 2023, 52, 248–276. doi 10.1039/d2cs00762b
  3. 3. Tiz D.B., Bagnoli L., Rosati O., Marini F., Sancineto L., Santi C. Molecules. 2022, 27, 1643–1666. doi 10.3390/molecules27051643
  4. 4. Mei H., Han J., White S., Graham D.J., Izawa K., Sato T., Fustero S., Meanwell N.A., Soloshonok V.A. Chem. Eur. J. 2020, 26, 11349–11390. doi 10.1002/chem.202000617
  5. 5. Dhiman P., Arora N., Thanikachalam P.V., Monga V. Bioorg. Chem. 2019, 92, 103291. doi 10.1016/j.bioorg.2019.103291
  6. 6. Wang J., Sánchez-Roselló M., Aceña J.L., del Pozo C., Sorochinsky A.E., Fustero S., Soloshonok V.A., Liu H. Chem. Rev. 2014, 114, 2432–2506. doi 10.1021/cr4002879
  7. 7. Zaikin P.A., Borodkin G.I. In: Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates. Ed. A. Postigo. Amsterdam: Elsevier. 2019, 105–135. doi 10.1016/B978-0-12-812958-6.00003-3
  8. 8. Mykhailiuk P.K. Chem. Rev. 2021, 121, 1670–1715. D doi 10.1021/acs.chemrev.0c01015
  9. 9. Jeschke P. Eur. J. Org. Chem. 2022, e202101513. doi 10.1002/ejoc.202101513
  10. 10. Jeanmart S., Edmunds A.J.F., Lamberth C., Pouliot M. Bioorg. Med. Chem. 2016, 24, 317–341. doi 10.1016/j.bmc.2015.12.014
  11. 11. Li F., Wang M., Liu S., Zhao Q. Chem. Sci., 2022, 13, 2184–2201. doi 10.1039/d1sc06586f
  12. 12. Bremer M., Kirsch P., Klasen-Memmer M., Tarumi K. Angew. Chem. Int. Ed. 2013, 52, 8880–8896. doi 10.1002/anie.201300903
  13. 13. Squeo B.M., Gregoriou V.G., Avgeropoulos A., Baysec S., Allardd S., Scherf U., Chochos C.L. Progress Polymer Sci. 2017, 71, 26–52. doi 10.1016/j.progpolymsci.2017.02.003
  14. 14. Gillis E.P., Eastmann K.J., Hill M.D., Donnelly D.J., Meanwell N.A. J. Med. Chem. 2015, 58, 8315–8359. doi 10.1021/acs.jmedchem.5b00258
  15. 15. Бородкин Г.И., Шубин В.Г. ЖОрХ, 2021, 57, 1209–1242 [Borodkin G.I., Shubin V.G. Russ. J. Org. Chem. 2021, 57, 1369–1397]. doi 10.1134/S1070428021090013
  16. 16. Borodkin G.I., Shubin V.G. Chem. Heterocycl. Compd. 2022, 58, 84–96. doi 10.1007/s10593-022-03060-3
  17. 17. Ramsden C.A. Arkivok 2014 (i), 109–126. doi 10.3998/ark.5550190.p008.436
  18. 18. Бородкин Г.И., Шубин В.Г. Усп. хим., 2010, 79, 299–324. [Borodkin G.I., Shubin V.G. Russ. Chem. Rev. 2010, 79, 259–283]. doi 10.1070/RC2010v079n04ABEH004091
  19. 19. Fluorination, Synthetic Organofluorine Chemistry. Eds. J. Hu, T. Umemoto, Springer Nature Singapore Pte Ltd. 2020, 429, 446, 451, 529, 558, 566. doi 10.1007/978-981-10-3896-9
  20. 20. Бородкин Г.И. Усп. хим., 2023, 92, RCR5091 [Borodkin G.I. Russ. Chem. Rev. 2023, 92, RCR5091]. doi 10.59761/RCR5091
  21. 21. Liang T., Neumann C.N., Ritter T. Angew. Chem. Int. Ed. 2013, 52, 8214–8264. doi 10.1002/anie.201206566
  22. 22. Rozatian N., Hodgson D.R.W. Chem. Commun., 2021, 57, 683–712. doi 10.1039/d0cc06339h
  23. 23. Sakthivel K., Subhiksha J., Raju A., Kumar R., Dohi T., Singha F.V. Arkivoc, 2022, 138–165. doi 10.24820/ark.5550190.p011.996
  24. 24. Haufe G. Chem. Rec. 2023, 23, e202300140. doi 10.1002/tcr.202300140
  25. 25. Borodkin G.I., Zaikin P.A., Shubin V.G. Tetrahedron Lett. 2006, 47, 2639–2642. doi 10.1016/j.tetlet.2006.02.016
  26. 26. Бородкин Г.И., Заикин П.А., Шакиров М.М., Шубин В.Г. ЖОрХ, 2007, 43, 1460−1468 [Borodkin G.I., Zaikin P.A., Shakirov M.M., Shubin V.G. Russ. J. Org. Chem. 2007, 43, 1451−1459.] doi 10.1134/S1070428007100077
  27. 27. Bykova T., Al-Maharik N., Slawin A.M.Z., O’Hagan D. J. Fluor. Chem. 2015, 179, 188–192. doi 10.1016/j.jfluchem.2015.08.003
  28. 28. Kitamura T., Yoshida K., Mizuno S., Miyake A., Oyamada J. J. Org. Chem. 2018, 83, 14853–14860. doi 10.1021/acs.joc.8b02473
  29. 29. Ilchenko N.O., Tasch B.O.A., Szabó K.J. Angew. Chem. Int. Ed. 2014, 53, 12897–12901. doi 10.1002/anie.201408812
  30. 30. Banik S.M., Medley J.W., Jacobsen E.N. Science. 2016, 353, 51–54. doi 10.1126/science.aaf8078
  31. 31. Zhou B., Haj M.K., Jacobsen E.N., Houk K.N., Xue X.-S. J. Am. Chem. Soc. 2018, 140, 15206−15218. doi 10.1021/jacs.8b05935
  32. 32. Scheidt F., Neufeld J., Schäfer M., Thiehoff C., Gilmour R. Org. Lett. 2018, 20, 8073−8076. doi 10.1021/acs.orglett.8b03794
  33. 33. Kitamura T., Muta K., Oyamada J. J. Org. Chem. 2015, 80, 10431−10436. doi 10.1021/acs.joc.5b01929
  34. 34. Kitamura T., Kitamura D., Oyamada J., Higashi M., Kishikawa Y. Adv. Synth. Catal. 2023, 365, 2744–2750. doi 10.1002/adsc.202300265
  35. 35. Lv W.-X., Li Q., Li J.-L., Li Z., Lin E., Tan D.-H., Cai Y.-H., Fan W.-X., Wang H. Angew. Chem. Int. Ed. 2018, 57, 16544–16548. doi 10.1002/anie.201810204
  36. 36. Zhao Z., Racicot L., Murphy G.K. Angew. Chem. Int. Ed. 2017, 56, 11620–11623. doi 10.1002/anie.201706798
  37. 37. Scheidt F., Schäfer M., Sarie J.C., Daniliuc C.G., Molloy J.J., Gilmour R. Angew. Chem. 2018, 130, 16431–16435. doi 10.1002/ange.201810328
  38. 38. Sharma H.A., Mennie K.M., Kwan E.E., Jacobsen E.N. J. Am. Chem. Soc. 2020, 142, 16090– 16096.
  39. 39. Hoogesteger R.H., Murdoch N., Cordes D.B., Johns-ton C.P. Angew. Chem. Int. Ed. 2023, 62, e202308048. doi 10.1002/anie.202308048
  40. 40. Wang Q., Biosca M., Himo F., Szabó K.J. Angew. Chem. Int. Ed. 2021, 60, 26327–26331. doi 10.1002/anie.202109461
  41. 41. Scheidt F., Neufeld J., Schäfer M., Thiehoff C., Gil-mour R. Org. Lett. 2018, 20, 8073–8076. doi 10.1021/acs.orglett.8b03794
  42. 42. Lin P.-P., Huang L.-L., Feng S.-X., Yang S., Wang H., Huang Z.-S., Li Q. Org. Lett. 2021, 23, 3088–3093. doi 10.1021/acs.orglett.1c00767
  43. 43. Brunner C., Andries-Ulmer A., Kiefl G.M., Gulder T. Eur. J. Org. Chem. 2018, 2615–2621. doi 10.1002/ejoc.201800129
  44. 44. Chai H., Zhen X., Wang X., Qi L., Qin Y., Xue J., Xu Z., Zhang H., Zhu W. ACS Omega, 2022, 7, 19988–19996.doi 10.1021/acsomega.2c01791
  45. 45. Neufeld J., Stünkel T., Mück-Lichtenfeld C., Daniliuc C.G., Gilmour R. Angew. Chem. Int. Ed. 2021, 60, 13647–13651. doi 10.1002/anie.202102222
  46. 46. Ulmer A., Brunner C., Arnold A.M., Pöthig A., Gulder T. Chem. Eur. J. 2016, 22, 3660–3664. doi 10.1002/chem.201504749
  47. 47. Yan T., Zhou B., Xue X.-S., Cheng J.-P. J. Org. Chem. 2016, 81, 9006−9011. doi 10.1021/acs.joc.6b01642
  48. 48. Geary G.C., Hope E.G., Stuart A.M. Angew. Chem. Int. Ed. 2015, 54, 14911–14914. doi 10.1002/anie.201507790
  49. 49. Ren J., Du F.-H., Jia M.-C., Hu Z.-N., Chen Z., Zhang C. Angew. Chem. Int. Ed. 2021, 60, 24171–24178. doi 10.1002/anie.202108589
  50. 50. Komatsuda M., Suto A., Kondo H., Takada H., Kato K., Saito B., Yamaguchi J. Chem. Sci., 2022, 13, 665–670. doi 10.1039/d1sc06273e
  51. 51. Lin T.-S., Tsai W.-T., Liang P.-H. Tetrahedron 2016, 72, 5571–5577. doi 10.1016/j.tet.2016.06.075
  52. 52. Xu Z.-F., Dai H., Shan L., Li C.-Y. Org. Lett. 2018, 20, 1054−1057. doi 10.1021/acs.orglett.7b04014
  53. 53. Levin M.A., Ovian J.M., Read J.A., Sigman M.S., Jacobsen E.N. J. Am. Chem. Soc. 2020, 142, 14831–14837. doi 10.1021/jacs.0c07043
  54. 54. Li C., Liao Y., Tan X., Liu X., Liu P., Lv W.-X., Wang H. Sci. China Chem., 2021, 64, 999–1003. doi 10.1007/s11426-021-9965-9
  55. 55. Ning Y., Sivaguru P., Zanoni G., Anderson E.A., Bi X. Chem. 2020, 6, 486–496. doi 10.1016/j.chempr.2019.12.004
  56. 56. Pang J.H., Chiba S. Sci. China Chem. 2020, 63, 1019–1020. doi 10.1007/s11426-020-9773-3
  57. 57. Li H., Reddy B.R.P., Bi X. Org. Lett. 2019, 21, 9358–9362. doi 10.1021/acs.orglett.9b03593
  58. 58. Inoue T., Nakabo S., Hara S. J. Fluor. Chem. 2016, 184, 22–27. doi 10.1016/j.jfluchem.2016.02.002
  59. 59. Yang B., Chansaenpak K., Wu H., Zhu L., Wang M., Li Z., Lu H. Chem. Commun., 2017, 53, 3497–3500. doi 10.1039/c7cc01393k
  60. 60. Ren S., Feng C., Loh T.-P. Org. Biomol. Chem., 2015, 13, 5105–5109. doi 10.1039/c5ob00632e
  61. 61. Kim Y., Kim D.Y. Asian J. Org. Chem. 2019, 8, 679–682. doi 10.1002/ajoc.201900029
  62. 62. Fan X., Wang Q., Wei Y., Shi M. Chem. Commun., 2018, 54, 10503–10506. doi 10.1039/c8cc05634j
  63. 63. Garia A., Kumar S., Jain N. Asian J. Org. Chem. 2022, 11, e202200164. doi 10.1002/ajoc.202200164
  64. 64. Liu A., Ni C., Xie Q., Hu J. Angew. Chem. Int. Ed. 2022, 61, e202115467. doi 10.1002/anie.202115467
  65. 65. Romanov-Michailidis F., Guénée L., Alexakis A. Angew. Chem. Int. Ed. 2013, 52, 9266–9270. doi 10.1002/anie.201303527
  66. 66. Romanov-Michailidis F., Romanova-Michaelides M., Pupier M., Alexakis A. Chem. Eur. J. 2015, 21, 5561–5583. doi 10.1002/chem.201406133
  67. 67. Zhao P., Wang W., Gulder T. Org. Lett. 2023, 25, 6560−6565. doi 10.1021/acs.orglett.3c02384
  68. 68. Feng S.-X., Yang S., Tu F.-H., Lin P.-P., Huang L.-L., Wang H., Huang Z.-S., Li Q. J. Org. Chem. 2021, 86, 6800−6812. doi 10.1021/acs.joc.1c00578
  69. 69. Chen Z.-M., Yang B.-M., Chen Z.-H., Zhang Q.-W., Wang M., Tu Y.-Q. Chem. Eur. J. 2012, 18, 12950–12954. doi 10.1002/chem.201202444
  70. 70. Das B.K., Tokunaga E., Harada K., Sumii Y., Shibata N. Org. Chem. Front., 2017, 4, 1726–1730. doi 10.1039/c7qo00234c
  71. 71. Liao L., An R., Li H., Xu Y., Wu J.-J., Zhao X. Angew. Chem. Int. Ed. 2020, 59, 11010–11019. doi 10.1002/anie.202003897
  72. 72. Alcaide B., Almendros P., Cembellıґn S., Martíґnez del Campo T., Muñoz A . Chem. Commun. 2016, 52, 6813–6816. doi 10.1039/c6cc02012g
  73. 73. Lu Y., Kasahara A., Hyodo T., Ohara K., Yamaguchi K., Otani Y., Ohwada T. Org. Lett. 2023, 25, 3482–3486. doi 10.1021/acs.orglett.3c01063
  74. 74. Thornbury R.T., Saini V., Fernandes T.A., Santiago C.B., Talbot E.P.A., Sigman M.S., McKenna J.M., Toste F.D. Chem. Sci. 2017, 8, 2890–2897. doi 10.1039/c6sc05102b
  75. 75. Cao J., Wu H., Wang Q., Zhu J. Nature Chem. 2021, 13, 671–676. doi 10.1038/s41557-021-00698-ydoi.org/10.1038/s41557-021-00698oi.org/10.1038/s41557-
  76. 76. Gong J., Wang Q., Zhu J. Angew. Chem. Int. Ed. 2022, 61, e202211470. doi 10.1002/anie.202211470
  77. 77. Yang G., Wu H., Gallarati S., Corminboeuf C., Wang Q., Zhu J. J. Am. Chem. Soc. 2022, 144, 14047−14052. doi 10.1021/jacs.2c06578
  78. 78. Mishra K., Singh J.B., Gupta T., Singh R.M. Org. Chem. Front. 2017, 4, 1794–1798. doi 10.1039/c7qo00346c
  79. 79. De Haro T., Nevado C. Chem. Commun., 2011, 47, 248–249. doi 10.1039/c002679d
  80. 80. Yang L., Ma Y., Song F., You J. Chem. Commun., 2014, 50, 3024–3026. doi 10.1039/c3cc49851d
  81. 81. Liu N., Tian Q.-P., Yang Q., Yang S.-D. Synlett 2016, 27, 2621–2625. doi 10.1055/s-0035-1562537; Art ID: st-2016-w0347-l
  82. 82. Bui T.T., Hong W.P., Kim H.-K. J. Fluor. Chem. 2021, 247, 109794. doi 10.1016/j.jfluchem.2021.109794
  83. 83. Morcillo S.P. Angew. Chem. Int. Ed. 2019, 58, 14044–14054. doi 10.1002/anie.201905218
  84. 84. Бородкин Г.И., Шубин В.Г. Усп. хим. 2019, 89, 160–203 [Borodkin G.I., Shubin V.G. Russ. Chem. Rev., 2019, 88, 160–203.] doi 10.1070/RCR4833?locatt=label:RUSSIAN
  85. 85. Morcillo S.P., Dauncey E.M., Kim J.H., Douglas J.J., Sheikh N.S., Leonori D. Angew. Chem. Int. Ed. 2018, 57, 12945 –12949. doi 10.1002/anie.201807941
  86. 86. Wang M.-M., Waser J. Angew. Chem. Int. Ed. 2020, 59, 16420–16424. doi 10.1002/anie.202007864
  87. 87. Dauncey E.M., Morcillo S.P., Douglas J.J., Sheikh N.S., Leonori D. Angew. Chem. Int. Ed. 2018, 57, 744–748. doi 10.1002/anie.201710790
  88. 88. Liu J., Wei Y., Shi M. Org. Chem. Front., 2021, 8, 94–100. doi 10.1039/d0qo00853b
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library