RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

Synthesis and Antiproliferative Activity of 2-Aryl-aminopyrimidine Amides of Benzimidazole-Substituted Phenylcarboxylic Acid - New Potential Protein Kinase Inhibitors

PII
S30346304S0514749225020053-1
DOI
10.7868/S3034630425020053
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
159-166
Abstract
The results of a study on the synthesis and antiproliferative activity of new phenylcarboxylic acid amides, the structure of which contains pharmacophoric fragments of nitrogen-containing heterocycles - 2-aminopyrimidine, benzimidazole, pyridine, are presented. The synthesis was carried out by acylation of substituted 2-arylaminopyrimidine phenylenediamines with p-benzimidazole-phenylcarboxylic acid chloride or by aminolysis of p-benzimidazolephenylcarboxylic acid with 2-arylaminopyrimidinephenylenediamines. The potential inhibitory activity of the synthesized amides was assessed by in vitro screening of the compounds for antiproliferative activity in models of stable human tumor cell lines K562, HL-60, RPMI 1788, HeLa.
Keywords
производные 2-ариламинопиримидина бензимидазол синтез антипролиферативная активность
Date of publication
21.12.2024
Year of publication
2024
Number of purchasers
0
Views
18

References

  1. 1. Medina-Franco J.L., Giulianotti M.A., Welmaker G. S. Houghten R.A. Drug Discovery. Today. 2013, 18 (9-10), 495-501. doi 10.1016/j.drudis.2013.01.008
  2. 2. Proschak E., Stark H., Merk D. J. Med. Chem. 2019, 62, 420-444. doi 10.1021/acs.jmedchem. 8b00760
  3. 3. Morphy R. J. Med. Chem. 2010, 53, 1413-1437. doi 10.1021/jm901132v
  4. 4. Rodríguez-Soacha D.A., Scheiner M., Decker M. Eur. J. Med. Chem. 2019, 180, 690-706. doi 10.1016/j.ejmech.2019.07.040
  5. 5. Kerru N., Singh P., Koorbanally N., Raj R., Kumar V. Eur. J. Med. Chem. 2017, 142, 179-212. doi 10.1016/j.ejmech.2017.07.033
  6. 6. Liu T., Wan Y., Xiao Y., Xia C., Duan G. J. Med. Chem. 2020, 63 (17), 8977-9002. doi 10.1021/acs.jmedchem.0c00491
  7. 7. Ma X., Lv X., Zhang J. Eur. J. Med. Chem. 2018, 143, 449-463. doi 10.1016/j.ejmech.2017.11.049
  8. 8. Borsari Ch., Trader D.J., Tait A., Costi M.P. J. Med. Chem. 2020, 63 (5), 1908-1928. doi 10.1021/acs.jmedchem.9b01456
  9. 9. Королева Е.В., Игнатович Ж.И., Синютич Ю.В., Гусак К.Н. ЖОрХ. 2016, 52, 159-196. @@ Koroleva E.V., Ignatovich Zh.I., Sinyutich Yu.V., Gusak K.N.Russ. J. Org. Chem. 2016, 52, 139-177. doi 10.1134/S1070428016020019
  10. 10. Ertl P., Altmann E., McKenna J.M. J. Med. Chem. 2020, 63 (15), 8408-8418. doi 10.1021/acs.jmedchem.0c00754
  11. 11. Meng L., Shan G., Yong W., Xinying Y., Hao F., Xuben H. J. Med. Chem. 2024, 67 (17), 15098-15117. doi 10.1021/acs.jmedchem.4c00729
  12. 12. Гросс Э., Майенхофер И. Пептиды. Основные методы образования пептидных связей М.: Мир. Москва: 1983. 421 с.
  13. 13. Chan L.C., Cox B.G. J. Org. Chem. 2007, 72 (23), 8863-8869. doi 10.1021/jo701558y
  14. 14. Zhang L., Wang X., Wang J., Grinberg N., Krishnamurthy D., Senanayake C.H. Tetrahedron Lett. 2009, 50, 2964-2966. doi 10.1016/j.tetlet.2009.03.220
  15. 15. Huynh T.K.C., Nguyen T., Trand N.H.S., Nguyen T.D., Hoang T.K.D. J. Chem. Sci. 2020, 132, 84-91. doi 10.1007/s12039-020-01783-4
  16. 16. Королева Е.В., Игнатович Ж.В., Ермолинская А.Л., Синютич Ю.В., Барановский А.В., Махнач С.А. Изв. НАН Беларуси. сер. хим. наук. 2013, 3, 79-84. @@ Koroleva E.V., Ignatovich Zh.I., Ermolinskaya A.L. Sinyutich Yu.V., Baranovskii A.V., Makhnach S.A. Izvestiya NAN Belarusi. ser. chem.sci. 2013, 3, 79-84.
  17. 17. Al-Nasiry S., Geusens N., Hanssens M., Luyten C., Pijnenborg R. Human. Reproduction. 2007, 22, 1304-1309. doi 10.1093/humrep/dem011
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library