RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

Allylation of (R)-2,3-O-Cyclohexylidene glyceraldehyde by 2-Substituted Allyl Stannanes. Application in the Synthesis of Natural Compounds

PII
S30346304S0514749225040039-1
DOI
10.7868/S3034630425040039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 4
Pages
372-386
Abstract
The possibility of diastereoselective allylation of (R)-2,3-O-cyclohexylidene glyceraldehyde with methyl 3-[(tributylstannyl)methyl]but-3-enoate and tributyl[2-(2,2-diethoxyethyl)prop-2-en-1-yl]stannane was studied for the first time. The obtained products were used in the synthesis of valuable building blocks – unsaturated lactones (6R)- and (6S)-6-[(2R)-1,4-dioxaspiro[4.5]dec-2-yl]-4-methyl-5,6-dihydro-2H-pyran-2-one, which found application in the preparation of the C’–C’ fragment of amphidinolides of families C and F, the pheromone of the hemlock moth Lambdina athasaria, in the formal synthesis of the pheromone of the pine moth Lambdina pellucidaria and the coffee leaf miner Leucoptera coffeella.
Keywords
диастереоселективное аллилирование амфидинолиды семейств C и F динофлагеллят 2-замещенный аллилстаннан внутримолекулярная оксо-циклизация Михаэля феромон моли болиголова весеннего Lambdina athasaria
Date of publication
15.12.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Masiuk U.S., Faletrov Y.V., Kananovich D.G., Mineyeva I.V. J. Org. Chem. 2023, 88, 1, 355–370. doi 10.1021/acs.joc.2c02382
  2. 2. Keck G.E., Yu T., McLaws M.D. J. Org. Chem. 2005, 70, 7, 2543–2550. doi 10.1021/jo048308m
  3. 3. Williams D.R., Clark M.P., Emde U., Berliner M.A. Org. Lett. 2000, 2 (19), 3023–3026. doi 10.1021/ol0063656
  4. 4. Williams D.R, Meyer K.G., Shamim K., Patnaik S. Can. J. Chem. 2004, 82 (2), 120–130. doi 10.1139/v03-168
  5. 5. Williams D.R., Claeboe C.D., Liang B., Zorn N., Chow N.S.C. Org. Lett. 2012, 14 (15), 3866–3869. doi 10.1021/ol3015682
  6. 6. Kim S.W., Zhang W., Krische M.J. Acc. Chem. Res. 2017, 50 (9), 2371–2380. doi 10.1021/acs.accounts.7b00308
  7. 7. Almendros P., Thomas E.J. J. Chem. Soc. Perkin Trans. 1. 1997, 17, 2561–2568. doi 10.1039/A702257C
  8. 8. Yadav J.S., Reddy B.V.S., Kondaji G., Shyam Sunder Reddy J. Tetrahedron. 2005, 61 (4), 879–882. doi 10.1016/j.tet.2004.11.029
  9. 9. Zhang X. Synlett. 2008,1, 0065–0068. doi 10.1055/s-2007-990919
  10. 10. Raju A., Sabitha G. RSC Adv. 2015, 5 (43), 34040–34046. doi 10.1039/C5RA03693C
  11. 11. Минеева И.В., Кулинкович О.Г. ЖOрХ. 2008, 44 (9), 1277–1282. @@Mineeva I.V., Kulinkovich O.G. Russ. J. Org. Chem. 2008, 44 (9), 1261–1266. doi 10.1134/S1070428008090029
  12. 12. Минеева И.В. ЖОрХ. 2019, 55 (8), 1203–1214. @@Mineeva I.V. Russ. J. Org. Chem. 2019, 55 (8), 1112–1123. doi 10.1134/S1070428019080098
  13. 13. Минеева И.В. ЖОрХ. 2020, 56 (6), 885–892. @@Mineeva I.V. Russ. J. Org. Chem. 2020, 56 (6), 994–1000. doi 10.1134/S1070428020060056
  14. 14. Минеева И.В. ЖОрХ. 2018, 54 (9), 1329–1336. @@Mineeva I.V. Russ. J. Org. Chem. 2018, 54 (9), 1341–1349. doi 10.1134/S1070428018090130
  15. 15. Минеева И. В. ЖОрХ. 2019, 55 (4), 635–644. @@Mineeva I.V. Russ. J. Org. Chem. 2019, 55 (4), 530–539. doi 10.1134/S1070428019040195
  16. 16. Kang K.-T., Sung T.M., Kim J.K., Kwon Y.M. Synth. Commun. 1997, 27 (7), 1173–1181. doi 10.1080/00397919708003354
  17. 17. Oda Y., Matsuo S., Saito K. Tetrahedron Lett. 1992, 33 (1), 97–100. doi 10.1016/S0040-4039(00)77683-0
  18. 18. Bartoli G., Bosco M., Giuliani A., Marcantoni E., Palmieri A., Petrini M., Sambri L. J. Org. Chem. 2004, 69 (4), 1290–1297. doi 10.1021/jo035542o
  19. 19. Yadav J.S., Reddy B.V.S., Krishna A.D., Sadasiv K., Janardhana Chary Ch. Chem. Lett. 2003, 32 (3), 248–249. doi 10.1246/cl.2003.248
  20. 20. Surendra K., Srilakshmi Krishnaveni N., Sridhar R., Srinivas B., Pavan Kumar V., Nageswar Y.V.D., Rama Rao K. Synth. Commun. 2006, 36 (1), 1–5. doi 10.1080/00397910500328092
  21. 21. Suzuki I., Yamamoto Y. J. Org. Chem. 1993, 58 (18), 4783–4784. doi 10.1021/jo00070a004
  22. 22. Kim J., Kreller C.R., Greenberg M.M. J. Org. Chem. 2005, 70 (20), 8122–8129. doi 10.1021/jo0512249
  23. 23. McNeill A.H., Thomas E.J. Synthesis. 1994, 1994 (3), 322–334. doi 10.1055/s-1994-25469
  24. 24. Hachiya I., Kobayashi S. J. Org. Chem. 1993, 58 (25), 6958–6960. doi 10.1021/jo00077a009
  25. 25. Masiuk U.S., Mineeva I.V., Kananovich D.G. Symmetry. 2021, 13, 470–457. doi 10.3390/sym13030470
  26. 26. Carda M., Castillo E., Rodrı́guez S., González F., Marco J.A. Tetrahedron Asymmetry. 2001, 12 (10), 1417–1429. doi 10.1016/S0957-4166(01)00262-2
  27. 27. Shibata I., Yoshimura N., Yabu M., Baba A. Eur. J. Org. Chem. 2001, 2001, 17, 3207–3211. doi 10.1002/1099-0690(200109)2001
  28. 28. Li G.L., Zhao G. J. Org. Chem. 2005, 70 (11), 4272–4278. doi 10.1021/jo050186q
  29. 29. Naruta Y., Ushida S., Maruyama K. Chemistry Lett. 1979, 8 (8), 919–922. doi 10.1246/cl.1979.919
  30. 30. Jurczuc J., Pikul S., Bauer T. Tetrahedron. 1986, 42 (2), 447–488. doi 10.1016/S0040-4020(01)87445-7
  31. 31. Масюк В.С., Минеева И.В. ЖОрХ. 2016, 52 (2), 197–204 @@Masyuk V.S., Mineeva I.V. Russ. J. Org. Chem. 2016, 52 (2), 178–185. doi 10.1134/S1070428016020020
  32. 32. Kubota T., Tsuda M., Kobayashi J. Tetrahedron. 2003, 59 (10), 1613–1625. doi 10.1016/S0040-4020(03)00142-X
  33. 33. Bates R.H., Shotwell J.B., Roush W.R. Org. Lett. 2008, 10 (19), 4343–4346. doi 10.1021/ol801852j
  34. 34. Mohapatra D.K., Dasari P., Rahaman H., Pal R. Tetrahedron Lett. 2009, 50 (46), 6276–6279. doi 10.1016/j.tetlet.2009.09.001
  35. 35. Paudyal M.P., Rath N.P., Spilling C.D. Org. Lett. 2010, 12 (13), 2954–2957. doi 10.1021/ol100959a
  36. 36. Valot G., Regens C.S., O'Malley D.P., Godineau E., Takikawa H., Fürstner A. Angew. Chem. Int. Ed. 2013, 52 (36), 9534–9538. doi 10.1002/anie.201301700
  37. 37. Wu D., Forsyth C.J. Org. Lett. 2013, 15 (6), 1178–1181. doi 10.1021/ol303515h
  38. 38. Valot G., Mailhol D., Regens C.S., O’Malley D.P., Godineau E., Takikawa H., Philipps P., Fürstner A. Chem. Eur. J. 2015, 21 (6), 2398–2408. doi 10.1002/chem.201405790
  39. 39. Namirembe S., Yan L., Morken J.P. Org. Lett. 2020, 22 (23), 9174–9177. doi 10.1021/acs.orglett.0c03134
  40. 40. Díaz D.D., Martín V.S. J. Org. Chem. 2000, 65 (23), 7896–7901. doi 10.1021/jo0055436
  41. 41. Enders D., Schüßeler T. Tetrahedron Lett. 2002, 43 (19), 3467–3470. doi 10.1016/S0040-4039(02)00595-6
  42. 42. Zarbin P.H.G., Princival J.L., Lima de E.R., Santosdos A.A., Ambrogio B.G., Oliveira de A.R.M. Tetrahedron Lett. 2004, 45 (19), 239–241. doi 10.1016/j.tetlet.2003.10.183
  43. 43. Shirai Y., Seki M., Mori K. Eur. J. Org. Chem. 1999, 1999, 11, 3139–3145. doi 10.1002/(SICI)1099-0690(199911)1999:113.0.CO;2-8
  44. 44. Armarego W.L.F., Chai C.L.L. Purification of laboratory chemicals, 6th ed., Butterworth-Heinemann. 2009, 608.
  45. 45. Kim S.H., Lee H.S., Kim K.H., Kim S.H., Kim J.N. Tetrahedron. 2010, 66 (35), 7065–7076. doi 10.1016/j.tet.2010.05.103
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library