RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

Synthesis of 6(pyrrolyl)-azolo[1,5-a]pyrimidine-7-amines by the Clausion–Kaas Method

PII
S30346304S0514749225050103-1
DOI
10.7868/S3034630425050103
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
591-600
Abstract
For the first time, a method for synthesizing pyrrole derivatives based on azolo[1,5-a]pyrimidines using the Clauson–Kaas reaction has been implemented. It was established that among azolo[1,5-a]pyrimidine-6,7-diamines, only the amino group in position 6 enters into selective interaction. The developed approach allows obtaining 6-(pyrrolyl)-azolo[1,5-a]pyrimidine-7-amines with yields of 64–85% and high purity. The direction of the reaction was confirmed by NMR spectroscopy data and X-ray diffraction analysis.
Keywords
азоло[1,5-a]пиримидины пиррол 2,5-диметокситетрагидрофуран катализ
Date of publication
13.12.2025
Year of publication
2025
Number of purchasers
0
Views
26

References

  1. 1. Sokolnikova T.V., Proidakov A.G., Penzik M.V., Kizhnyaev V.N., Russ. J. Org. Chem. 2024, 60, 1006–1012. doi 10.1134/S1070428024060046
  2. 2. Asati V., Anant A., Patel P., Kaur K., Gupta G.D., Eur. J. Med. Chem. 2021, 225, 113781. doi 10.1016/j.ejmech.2021.113781
  3. 3. Adawy H.A., Tawfik S.S., Elgazar A.A., Selim K.B., Goda F.E., RSC Adv. 2024, 14, 35239–35254. doi 10.1039/D4RA06704E
  4. 4. Pismataro M.C., Felicetti T., Bertagnin C., Nizi M.G., Bonomini A., Barreca M.L., Cecchetti V., Jochmans D., De Jonghe S., Neyts J., Loregian A., Tabarrini O., Massari S., Eur. J. Med. Chem. 2021, 221, 113494. doi 10.1016/j.ejmech.2021.113494
  5. 5. Chakrasali P., Hwang D., Lee J.-Y., Jung E., Lee H.L., Reneesh A., Skarka A., Musilek K., Nguyen N.H., Shin J.S., Jung, Y.-S., Eur. J. Med. Chem. 2024, 276, 116690. doi 10.1016/j.ejmech.2024.116690
  6. 6. Azeredo L.F.S.P., Coutinho J.P., Jabor V.A.P., Feliciano P.R., Nonato M.C., Kaiser C.R., Menezes C.M.S., Hammes A.S.O., Caffarena E.R., Hoelz L.V.B., De Souza N.B., Pereira G.A.N., Cerávolo I.P., Krettli A.U., Boechat N., Eur. J. Med. Chem. 2017, 126, 72–83. doi 10.1016/j.ejmech.2016.09.073
  7. 7. Zhuang J., Ma S., ChemMedChem 2020, 15, 1875–1886. doi 10.1002/cmdc.202000378
  8. 8. Ayman R., Abusaif M.S., Radwan A.M., Elmetwally A.M., Ragab A., Eur. J. Med. Chem. 2023, 249, 115138. doi 10.1016/j.ejmech.2023.115138
  9. 9. Brigance R.P., Meng W., Fura A., Harrity T., Wang A., Zahler R., Kirby M.S., Hamann L.G., Bioorg. Med. Chem. Lett. 2010, 20, 4395–4398. doi 10.1016/j.bmcl.2010.06.063
  10. 10. Bouihi F., Schmaltz B., Mathevet F., Kreher D., Faure-Vincent J., Yildirim C., Elhakmaoui A., Bouclé J., Akssira M., Tran-Van F., Abarbri M., Materials 2022, 15, 7992. doi 10.3390/ma15227992
  11. 11. Tigreros A., Portilla J., RSC Adv. 2020, 10, 19693–19712. doi 10.1039/D0RA02394A
  12. 12. Tigreros A., Macías M., Portilla J., Dyes and Pigments 2021, 184, 108730. doi 10.1016/j.dyepig.2020.108730
  13. 13. Rote R.V., Shelar D.P., Patil S.R., Shinde S.S., Toche R.B., Jachak M.N., J. Fluoresc. 2011, 21, 453–459. doi 10.1007/s10895-010-0704-3
  14. 14. Salas J.M., Angustias Romero M., Purificación Sánchez M., Quirós M., Coord. Chem. Rev. 1999, 193–195, 1119–1142. doi 10.1016/S0010-8545(99)00004-1
  15. 15. Castillo J.-C., Estupiñan D., Nogueras M., Cobo J., Portilla J., J. Org. Chem. 2016, 81, 12364–12373. doi 10.1021/acs.joc.6b02431
  16. 16. Aggarwal R., Kumar S., Virender Kumar A., Mohan B., Sharma D., Kumar V., Microchemical Journal 2022, 183, 107991. doi 10.1016/j.microc.2022.107991
  17. 17. Méndez-Arriaga J.M., Oyarzabal I., Escolano G., Rodríguez-Diéguez A., Sánchez-Moreno M., Salas J.M., J. Inorg. Biochem. 2018, 180, 26–32. doi 10.1016/j.jinorgbio.2017.11.027
  18. 18. Urakov G.V., Savateev K.V., Kotovskaya S.K., Rusinov V.L., Spasov A.A., Babkov D.A., Sokolova E.V., Molecules 2022, 27, 8697. doi 10.3390/molecules27248697
  19. 19. Pissot Soldermann C., Simic O., Renatus M., Erbel P., Melkko S., Wartmann M., Bigaud M., Weiss A., McSheehy P., Endres R., Santos P., Blank J., Schuffenhauer A., Bold G., Buschmann N., Zoller T., Altmann E., Manley P.W., Dix I., Buchdunger E., Scesa J., Quancard J., Schlapbach A., Bornancin F., Radimerski T., Régnier C.H., J. Med. Chem. 2020, 63, 14576–14593. doi 10.1021/acs.jmedchem.0c01245
  20. 20. Ushakova A.A., Fedotov V.V., Drokin R.A., Ulomsky E.N., Rusinov V.L., Spasov A.A., Naumenko L.V., Taran A.S., Chebanko A.M., Yakovlev D.S., Pshenichnikova M.S., ChemistrySelect 2024, 9, e202404243. doi 10.1002/slct.202404243
  21. 21. Esteban-Parra G.M., Sebastián E.S., Cepeda J., Sánchez-González C., Rivas-García L., Llopis J., Aranda P., Sánchez-Moreno M., Quirós M., Rodríguez-Diéguez A., J. Inorg. Biochem. 2020, 212, 111235. doi 10.1016/j.jinorgbio.2020.111235
  22. 22. Janke S., Boldt S., Nakielski P., Villinger A., Ehlers P., Langer P., J. Org. Chem. 2023, 88, 10470–10482. doi 10.1021/acs.joc.3c00386
  23. 23. Polkaehn J., Molenda R., Cordero M.A., Lochbrunner S., Boldt S., Ehlers P., Villinger A., Langer P., J. Org. Chem. 2024, 89, 2169–2181. doi 10.1021/acs.joc.3c01772
  24. 24. Singh P., Singh A., Singh D.K., Nath M., The Chemical Record 2024, 24, e202400112. doi 10.1002/tcr.202400112
  25. 25. Singh D.K., Kumar R., Beilstein J. Org. Chem. 2023, 19, 928–955. doi 10.3762/bjoc.19.71.
  26. 26. Bhardwaj V., Gumber D., Abbot V., Dhiman S., Sharma P., RSC Adv. 2015, 5, 15233–15266. doi 10.1039/C4RA15710A
  27. 27. Ahmad S., Alam O., Mohd. Naim J., Shaquiquzzaman M., Alam M.M., Iqbal, M., Eur. J. Med. Chem. 2018, 157, 527–561. doi 10.1016/j.ejmech.2018.08.002.
  28. 28. Gazizov D.A., Fedotov V.V., Chistyakov K.A., Gorbunov E.B., Rusinov G.L., Charushin V.N., Tetrahedron 2021, 89, 132172. doi 10.1016/j.tet.2021.132172
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library