- PII
- S30346304S0514749225050103-1
- DOI
- 10.7868/S3034630425050103
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 5
- Pages
- 591-600
- Abstract
- For the first time, a method for synthesizing pyrrole derivatives based on azolo[1,5-a]pyrimidines using the Clauson–Kaas reaction has been implemented. It was established that among azolo[1,5-a]pyrimidine-6,7-diamines, only the amino group in position 6 enters into selective interaction. The developed approach allows obtaining 6-(pyrrolyl)-azolo[1,5-a]pyrimidine-7-amines with yields of 64–85% and high purity. The direction of the reaction was confirmed by NMR spectroscopy data and X-ray diffraction analysis.
- Keywords
- азоло[1,5-a]пиримидины пиррол 2,5-диметокситетрагидрофуран катализ
- Date of publication
- 13.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 26
References
- 1. Sokolnikova T.V., Proidakov A.G., Penzik M.V., Kizhnyaev V.N., Russ. J. Org. Chem. 2024, 60, 1006–1012. doi 10.1134/S1070428024060046
- 2. Asati V., Anant A., Patel P., Kaur K., Gupta G.D., Eur. J. Med. Chem. 2021, 225, 113781. doi 10.1016/j.ejmech.2021.113781
- 3. Adawy H.A., Tawfik S.S., Elgazar A.A., Selim K.B., Goda F.E., RSC Adv. 2024, 14, 35239–35254. doi 10.1039/D4RA06704E
- 4. Pismataro M.C., Felicetti T., Bertagnin C., Nizi M.G., Bonomini A., Barreca M.L., Cecchetti V., Jochmans D., De Jonghe S., Neyts J., Loregian A., Tabarrini O., Massari S., Eur. J. Med. Chem. 2021, 221, 113494. doi 10.1016/j.ejmech.2021.113494
- 5. Chakrasali P., Hwang D., Lee J.-Y., Jung E., Lee H.L., Reneesh A., Skarka A., Musilek K., Nguyen N.H., Shin J.S., Jung, Y.-S., Eur. J. Med. Chem. 2024, 276, 116690. doi 10.1016/j.ejmech.2024.116690
- 6. Azeredo L.F.S.P., Coutinho J.P., Jabor V.A.P., Feliciano P.R., Nonato M.C., Kaiser C.R., Menezes C.M.S., Hammes A.S.O., Caffarena E.R., Hoelz L.V.B., De Souza N.B., Pereira G.A.N., Cerávolo I.P., Krettli A.U., Boechat N., Eur. J. Med. Chem. 2017, 126, 72–83. doi 10.1016/j.ejmech.2016.09.073
- 7. Zhuang J., Ma S., ChemMedChem 2020, 15, 1875–1886. doi 10.1002/cmdc.202000378
- 8. Ayman R., Abusaif M.S., Radwan A.M., Elmetwally A.M., Ragab A., Eur. J. Med. Chem. 2023, 249, 115138. doi 10.1016/j.ejmech.2023.115138
- 9. Brigance R.P., Meng W., Fura A., Harrity T., Wang A., Zahler R., Kirby M.S., Hamann L.G., Bioorg. Med. Chem. Lett. 2010, 20, 4395–4398. doi 10.1016/j.bmcl.2010.06.063
- 10. Bouihi F., Schmaltz B., Mathevet F., Kreher D., Faure-Vincent J., Yildirim C., Elhakmaoui A., Bouclé J., Akssira M., Tran-Van F., Abarbri M., Materials 2022, 15, 7992. doi 10.3390/ma15227992
- 11. Tigreros A., Portilla J., RSC Adv. 2020, 10, 19693–19712. doi 10.1039/D0RA02394A
- 12. Tigreros A., Macías M., Portilla J., Dyes and Pigments 2021, 184, 108730. doi 10.1016/j.dyepig.2020.108730
- 13. Rote R.V., Shelar D.P., Patil S.R., Shinde S.S., Toche R.B., Jachak M.N., J. Fluoresc. 2011, 21, 453–459. doi 10.1007/s10895-010-0704-3
- 14. Salas J.M., Angustias Romero M., Purificación Sánchez M., Quirós M., Coord. Chem. Rev. 1999, 193–195, 1119–1142. doi 10.1016/S0010-8545(99)00004-1
- 15. Castillo J.-C., Estupiñan D., Nogueras M., Cobo J., Portilla J., J. Org. Chem. 2016, 81, 12364–12373. doi 10.1021/acs.joc.6b02431
- 16. Aggarwal R., Kumar S., Virender Kumar A., Mohan B., Sharma D., Kumar V., Microchemical Journal 2022, 183, 107991. doi 10.1016/j.microc.2022.107991
- 17. Méndez-Arriaga J.M., Oyarzabal I., Escolano G., Rodríguez-Diéguez A., Sánchez-Moreno M., Salas J.M., J. Inorg. Biochem. 2018, 180, 26–32. doi 10.1016/j.jinorgbio.2017.11.027
- 18. Urakov G.V., Savateev K.V., Kotovskaya S.K., Rusinov V.L., Spasov A.A., Babkov D.A., Sokolova E.V., Molecules 2022, 27, 8697. doi 10.3390/molecules27248697
- 19. Pissot Soldermann C., Simic O., Renatus M., Erbel P., Melkko S., Wartmann M., Bigaud M., Weiss A., McSheehy P., Endres R., Santos P., Blank J., Schuffenhauer A., Bold G., Buschmann N., Zoller T., Altmann E., Manley P.W., Dix I., Buchdunger E., Scesa J., Quancard J., Schlapbach A., Bornancin F., Radimerski T., Régnier C.H., J. Med. Chem. 2020, 63, 14576–14593. doi 10.1021/acs.jmedchem.0c01245
- 20. Ushakova A.A., Fedotov V.V., Drokin R.A., Ulomsky E.N., Rusinov V.L., Spasov A.A., Naumenko L.V., Taran A.S., Chebanko A.M., Yakovlev D.S., Pshenichnikova M.S., ChemistrySelect 2024, 9, e202404243. doi 10.1002/slct.202404243
- 21. Esteban-Parra G.M., Sebastián E.S., Cepeda J., Sánchez-González C., Rivas-García L., Llopis J., Aranda P., Sánchez-Moreno M., Quirós M., Rodríguez-Diéguez A., J. Inorg. Biochem. 2020, 212, 111235. doi 10.1016/j.jinorgbio.2020.111235
- 22. Janke S., Boldt S., Nakielski P., Villinger A., Ehlers P., Langer P., J. Org. Chem. 2023, 88, 10470–10482. doi 10.1021/acs.joc.3c00386
- 23. Polkaehn J., Molenda R., Cordero M.A., Lochbrunner S., Boldt S., Ehlers P., Villinger A., Langer P., J. Org. Chem. 2024, 89, 2169–2181. doi 10.1021/acs.joc.3c01772
- 24. Singh P., Singh A., Singh D.K., Nath M., The Chemical Record 2024, 24, e202400112. doi 10.1002/tcr.202400112
- 25. Singh D.K., Kumar R., Beilstein J. Org. Chem. 2023, 19, 928–955. doi 10.3762/bjoc.19.71.
- 26. Bhardwaj V., Gumber D., Abbot V., Dhiman S., Sharma P., RSC Adv. 2015, 5, 15233–15266. doi 10.1039/C4RA15710A
- 27. Ahmad S., Alam O., Mohd. Naim J., Shaquiquzzaman M., Alam M.M., Iqbal, M., Eur. J. Med. Chem. 2018, 157, 527–561. doi 10.1016/j.ejmech.2018.08.002.
- 28. Gazizov D.A., Fedotov V.V., Chistyakov K.A., Gorbunov E.B., Rusinov G.L., Charushin V.N., Tetrahedron 2021, 89, 132172. doi 10.1016/j.tet.2021.132172