- PII
- S30346304S0514749225050014-1
- DOI
- 10.7868/S3034630425050014
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 5
- Pages
- 517-525
- Abstract
- The results of Pd-catalyzed difunctionalization of norbornene via one-pot three-component coupling of norbornene, aryl halide and arylacetylene with new C(sp)–C(sp)/C(sp)–C(sp) bond formation are presented. The convenience of the proposed approach compared to other methods is the use of a simple and accessible "ligand-free" catalytic system based on palladium salts and an inorganic base to obtain valuable bicyclo[2.2.1]heptane derivatives.
- Keywords
- арилгалогенид арилацетилен норборнен производные бицикло[2.2.1]гептана катализ палладий
- Date of publication
- 13.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 55
References
- 1. Fu X., Zhao W. Chin. J. Org. Chem. 2019, 39 (3), 625–647. doi 10.6023/cjoc201808031
- 2. Li Y., Wu D., Cheng H.-G., Yin G. Angew. Chem., Int. Ed. 2020, 59, 7990–8003. doi 10.1002/anie.201913382
- 3. Ma R., Fang S., Jiang H., Wu W. Org. Lett. 2024, 26, 2354–2358. doi 10.1021/acs.orglett.4c00051
- 4. Pounder A., Ho A., Macleod M., Tam W. Curr. Org. Synth. 2021, 18, 446–474. doi 10.2174/1570179417666210105121115
- 5. Khan R., Chen J., Fan B. Adv. Synth. Catal. 2020, 362, 1564–1601. doi 10.1002/adsc.201901494
- 6. Dragutan V., Demonceau A., Organometallic Polymers by Ring-Opening Metathesis Polymerization (ROMP) Reactions, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier, 2018, 1–11. doi 10.1016/B978-0-12-409547-2.14232-5.
- 7. Li M., Cai Z., Eisen M.S. Inorg. Chem. 2024, 63 (4), 1774–1783. doi 10.1021/acs.inorgchem.3c03093
- 8. Della Ca' N., Fontana M., Motti E., Catellani М. Acc. Chem. Res. 2016, 49 (7), 1389–1400. doi 10.1021/acs.accounts.6b00165
- 9. Li R., Dong G. J. Am. Chem. Soc. 2020, 142 (42), 17859–17875. doi 10.1021/jacs.0c09193
- 10. Chen C., Song J.-H., Ding L.-Y., Zhang X.-X., Wang K., Ni C., Hu J., Zhu B. Org. Lett. 2024, 26 (27), 5770–5775. doi 10.1021/acs.orglett.4c01944
- 11. Pounder A., Neufeld E., Myler P., Tam W. Beilstein J. Org. Chem. 2023, 19, 487–540. doi 10.3762/bjoc.19.38
- 12. Shi Y., Ji C.-L., Liu C. J. Org. Chem. 2023, 88, 261–271. doi 10.1021/acs.joc.2c02295
- 13. Li Z., Zheng J., Li C., Wu W., Jiang H. Chin. J. Chem. 2019, 37 (2), 140–147. doi 10.1002/cjoc.201800536
- 14. Xu T., Zhou X., Han Y., Zhang L., Liu L., Huang T., Li C., Tang Z., Wan S., Chen T. Tetrahedron Lett. 2022, 97, 153799. doi 10.1016/j.tetlet.2022.153799
- 15. Niu T., Zhao X., Jiang J., Yan H., Li Y., Tang S., Li Y., Song D. Molecules 2019, 24, 921. doi 10.3390/molecules24050921
- 16. Che J.-X., Wang Z.-L., Dong X.-W., Hu Y.-H., Xie X., Hu Y.-Z. RSC Adv. 2018, 8, 11061–11069. doi 10.1039/C8RA01806E
- 17. Frank D., Espeel P., Badi N., Prez F.D. Eur. Polym. J. 2018, 98, 246–253. doi 10.1016/j.eurpolymj.2017.11.023
- 18. Zhuang R., Liu H., Guo J., Dong B., Zhao W., Hu Y., Zhang X. Eur. Polym. J. 2017, 93, 358–367. doi 10.1016/j.eurpolymj.2017.06.018
- 19. Radzinski S.C., Foster J.C., Chapleski R.C. Jr., Troya D., Matson J.B. J. Am. Chem. Soc. 2016, 138, 6998–7004. doi 10.1021/jacs.5b13317
- 20. Choi C., Hong J., Tomita I., Endo T.B. Korean. Chem. Soc. 2002, 23, 112–118. doi 10.5012/bkcs.2002.23.1.112
- 21. Catellani M., Chiusoli P.G. Tetrahedron Lett. 1982, 23, 4517–4520. doi 10.1016/S0040-4039(00)85642-7
- 22. Motti E., Rossetti M., Bocelli G., Catellani M. J. Organomet. Chem. 2004, 689 (23), 3741–3749. doi 10.1016/j.jorganchem.2004.05.035
- 23. Catellani M., Chiusoli G.P., Concari S. Tetrahedron 1989, 45, 5263–5268. doi 10.1016/S0040-4020(01)81100-5
- 24. Kuo C.-J., Cheng S.-J., Chang S.-T., Liu C.-H. Eur. J. Org. Chem. 2008, 3, 485–491. doi 10.1002/ejoc.200700772
- 25. Gömöry Á., Somogyi Á., Tamás J., Stájer G., Bernáth G., Komáromi I. Int. J. Mass Spectrom. Ion Processes 1991, 107, 225–246. doi 10.1016/0168-1176(91)80061-Q
- 26. Larina E.V., Kurokhtina A.A., Vidyaeva E.V., Lagoda N.A., Schmidt A.F. Mol. Catal. 2021, 513, 111778. doi 10.1016/j.mcat.2021.111778
- 27. Ярош Е.В., Ларина Е.В., Лагода Н.А., Курохтина А.А., Шмидт А.Ф. ЖОрХ. 2019, 55 (5), 781–785. @@Yarosh E.V., Larina E.V., Lagoda N.A., Kurokhtina A.A., Schmidt A.F. Russ. J. Org. Chem. 2019, 55 (5), 678–681. doi 10.1134/S1070428019050154
- 28. Schmidt A.F., Kurokhtina A.A., Larina E.V., Vidyaeva E.V., Schmidt E.Y., Lagoda N.A. ChemCatChem 2020, 12 (21), 5523–5533. doi 10.1002/cctc.202000925
- 29. Лагода Н.А., Видяева Е.В., Ларина Е.В., Курохтина А.А., Шмидт А.Ф. ЖОрХ. 2021, 57 (1), 92–102. @@Lagoda N.A., Vidyaeva E.V., Larina E.V., Kurokhtina A.A., Schmidt A.F. Russ. J. Org. Chem. 2021, 57 (1), 71–78. doi 10.1134/S1070428021010103
- 30. Шмидт А.Ф., Аль-Халайка А., Смирнов В.В., Курох-тина А.А. Кинетика и катализ. 2008, 49, 669 –674. @@Schmidt A.F., Al-Halaiqa A., Smirnov V.V., Kurokhtina A.A. Kinet. Catal. 2008, 49, 638–643.
- 31. Шмидт А.Ф., Маметова Л.В., Дмитриева Е.В., Шмидт Е.Ю., Ткач В.С. Изв. АН СССР. Сер. хим. 1991, 40 (1), 208.
- 32. Курохтина А.А., Ларина Е.В., Ярош Е.В., Шмидт А.Ф. Кинетика и катализ. 2016, 57 (3), 376–382. @@Kurokhtina A.A., Larina E.V., Yarosh E.V., Schmidt A.F. Kinet. Catal. 2016, 57 (3), 373–379. doi 10.1134/S0023158416030095
- 33. Fernández E., Rivero-Crespo M.A., Domínguez I., Rubio-Marqués P., Oliver-Meseguer J., Liu L., Cabrero-Antonino M., Gavara R., Hernández-Garrido J.C., Boronat M., Leyva-Pérez A., Corma A. J. Am. Chem. Soc. 2019, 141 (5), 1928–1940. doi 10.1021/jacs.8b07884
- 34. Fantoni T, Bernardoni S, Mattellone A, Martelli G., Ferrazzano L., Cantelmi P., Corbisiero D., Tolomelli A., Cabri W., Vacondio F., Ferlenghi F., Mor M., Ricci A. ChemSusChem. 2021, 14 (12), 2591–2600. doi 10.1002/cssc.202100623
- 35. Zhao Z., Wang J., Zhang X., Lin T., Ren J., Pang W. Tetrahedron Lett. 2022, 100, 153849. doi 10.1016/j.tetlet.2022.153849.