RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

Synthesis of Bicyclo[2.2.1]heptane Derivatives via One-Pot Three-Component Coupling of Norbornene with Aryl Halide and Arylacetylene Using "Ligand-Free" Pd Catalytic Systems

PII
S30346304S0514749225050014-1
DOI
10.7868/S3034630425050014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
517-525
Abstract
The results of Pd-catalyzed difunctionalization of norbornene via one-pot three-component coupling of norbornene, aryl halide and arylacetylene with new C(sp)–C(sp)/C(sp)–C(sp) bond formation are presented. The convenience of the proposed approach compared to other methods is the use of a simple and accessible "ligand-free" catalytic system based on palladium salts and an inorganic base to obtain valuable bicyclo[2.2.1]heptane derivatives.
Keywords
арилгалогенид арилацетилен норборнен производные бицикло[2.2.1]гептана катализ палладий
Date of publication
13.12.2025
Year of publication
2025
Number of purchasers
0
Views
55

References

  1. 1. Fu X., Zhao W. Chin. J. Org. Chem. 2019, 39 (3), 625–647. doi 10.6023/cjoc201808031
  2. 2. Li Y., Wu D., Cheng H.-G., Yin G. Angew. Chem., Int. Ed. 2020, 59, 7990–8003. doi 10.1002/anie.201913382
  3. 3. Ma R., Fang S., Jiang H., Wu W. Org. Lett. 2024, 26, 2354–2358. doi 10.1021/acs.orglett.4c00051
  4. 4. Pounder A., Ho A., Macleod M., Tam W. Curr. Org. Synth. 2021, 18, 446–474. doi 10.2174/1570179417666210105121115
  5. 5. Khan R., Chen J., Fan B. Adv. Synth. Catal. 2020, 362, 1564–1601. doi 10.1002/adsc.201901494
  6. 6. Dragutan V., Demonceau A., Organometallic Polymers by Ring-Opening Metathesis Polymerization (ROMP) Reactions, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier, 2018, 1–11. doi 10.1016/B978-0-12-409547-2.14232-5.
  7. 7. Li M., Cai Z., Eisen M.S. Inorg. Chem. 2024, 63 (4), 1774–1783. doi 10.1021/acs.inorgchem.3c03093
  8. 8. Della Ca' N., Fontana M., Motti E., Catellani М. Acc. Chem. Res. 2016, 49 (7), 1389–1400. doi 10.1021/acs.accounts.6b00165
  9. 9. Li R., Dong G. J. Am. Chem. Soc. 2020, 142 (42), 17859–17875. doi 10.1021/jacs.0c09193
  10. 10. Chen C., Song J.-H., Ding L.-Y., Zhang X.-X., Wang K., Ni C., Hu J., Zhu B. Org. Lett. 2024, 26 (27), 5770–5775. doi 10.1021/acs.orglett.4c01944
  11. 11. Pounder A., Neufeld E., Myler P., Tam W. Beilstein J. Org. Chem. 2023, 19, 487–540. doi 10.3762/bjoc.19.38
  12. 12. Shi Y., Ji C.-L., Liu C. J. Org. Chem. 2023, 88, 261–271. doi 10.1021/acs.joc.2c02295
  13. 13. Li Z., Zheng J., Li C., Wu W., Jiang H. Chin. J. Chem. 2019, 37 (2), 140–147. doi 10.1002/cjoc.201800536
  14. 14. Xu T., Zhou X., Han Y., Zhang L., Liu L., Huang T., Li C., Tang Z., Wan S., Chen T. Tetrahedron Lett. 2022, 97, 153799. doi 10.1016/j.tetlet.2022.153799
  15. 15. Niu T., Zhao X., Jiang J., Yan H., Li Y., Tang S., Li Y., Song D. Molecules 2019, 24, 921. doi 10.3390/molecules24050921
  16. 16. Che J.-X., Wang Z.-L., Dong X.-W., Hu Y.-H., Xie X., Hu Y.-Z. RSC Adv. 2018, 8, 11061–11069. doi 10.1039/C8RA01806E
  17. 17. Frank D., Espeel P., Badi N., Prez F.D. Eur. Polym. J. 2018, 98, 246–253. doi 10.1016/j.eurpolymj.2017.11.023
  18. 18. Zhuang R., Liu H., Guo J., Dong B., Zhao W., Hu Y., Zhang X. Eur. Polym. J. 2017, 93, 358–367. doi 10.1016/j.eurpolymj.2017.06.018
  19. 19. Radzinski S.C., Foster J.C., Chapleski R.C. Jr., Troya D., Matson J.B. J. Am. Chem. Soc. 2016, 138, 6998–7004. doi 10.1021/jacs.5b13317
  20. 20. Choi C., Hong J., Tomita I., Endo T.B. Korean. Chem. Soc. 2002, 23, 112–118. doi 10.5012/bkcs.2002.23.1.112
  21. 21. Catellani M., Chiusoli P.G. Tetrahedron Lett. 1982, 23, 4517–4520. doi 10.1016/S0040-4039(00)85642-7
  22. 22. Motti E., Rossetti M., Bocelli G., Catellani M. J. Organomet. Chem. 2004, 689 (23), 3741–3749. doi 10.1016/j.jorganchem.2004.05.035
  23. 23. Catellani M., Chiusoli G.P., Concari S. Tetrahedron 1989, 45, 5263–5268. doi 10.1016/S0040-4020(01)81100-5
  24. 24. Kuo C.-J., Cheng S.-J., Chang S.-T., Liu C.-H. Eur. J. Org. Chem. 2008, 3, 485–491. doi 10.1002/ejoc.200700772
  25. 25. Gömöry Á., Somogyi Á., Tamás J., Stájer G., Bernáth G., Komáromi I. Int. J. Mass Spectrom. Ion Processes 1991, 107, 225–246. doi 10.1016/0168-1176(91)80061-Q
  26. 26. Larina E.V., Kurokhtina A.A., Vidyaeva E.V., Lagoda N.A., Schmidt A.F. Mol. Catal. 2021, 513, 111778. doi 10.1016/j.mcat.2021.111778
  27. 27. Ярош Е.В., Ларина Е.В., Лагода Н.А., Курохтина А.А., Шмидт А.Ф. ЖОрХ. 2019, 55 (5), 781–785. @@Yarosh E.V., Larina E.V., Lagoda N.A., Kurokhtina A.A., Schmidt A.F. Russ. J. Org. Chem. 2019, 55 (5), 678–681. doi 10.1134/S1070428019050154
  28. 28. Schmidt A.F., Kurokhtina A.A., Larina E.V., Vidyaeva E.V., Schmidt E.Y., Lagoda N.A. ChemCatChem 2020, 12 (21), 5523–5533. doi 10.1002/cctc.202000925
  29. 29. Лагода Н.А., Видяева Е.В., Ларина Е.В., Курохтина А.А., Шмидт А.Ф. ЖОрХ. 2021, 57 (1), 92–102. @@Lagoda N.A., Vidyaeva E.V., Larina E.V., Kurokhtina A.A., Schmidt A.F. Russ. J. Org. Chem. 2021, 57 (1), 71–78. doi 10.1134/S1070428021010103
  30. 30. Шмидт А.Ф., Аль-Халайка А., Смирнов В.В., Курох-тина А.А. Кинетика и катализ. 2008, 49, 669 –674. @@Schmidt A.F., Al-Halaiqa A., Smirnov V.V., Kurokhtina A.A. Kinet. Catal. 2008, 49, 638–643.
  31. 31. Шмидт А.Ф., Маметова Л.В., Дмитриева Е.В., Шмидт Е.Ю., Ткач В.С. Изв. АН СССР. Сер. хим. 1991, 40 (1), 208.
  32. 32. Курохтина А.А., Ларина Е.В., Ярош Е.В., Шмидт А.Ф. Кинетика и катализ. 2016, 57 (3), 376–382. @@Kurokhtina A.A., Larina E.V., Yarosh E.V., Schmidt A.F. Kinet. Catal. 2016, 57 (3), 373–379. doi 10.1134/S0023158416030095
  33. 33. Fernández E., Rivero-Crespo M.A., Domínguez I., Rubio-Marqués P., Oliver-Meseguer J., Liu L., Cabrero-Antonino M., Gavara R., Hernández-Garrido J.C., Boronat M., Leyva-Pérez A., Corma A. J. Am. Chem. Soc. 2019, 141 (5), 1928–1940. doi 10.1021/jacs.8b07884
  34. 34. Fantoni T, Bernardoni S, Mattellone A, Martelli G., Ferrazzano L., Cantelmi P., Corbisiero D., Tolomelli A., Cabri W., Vacondio F., Ferlenghi F., Mor M., Ricci A. ChemSusChem. 2021, 14 (12), 2591–2600. doi 10.1002/cssc.202100623
  35. 35. Zhao Z., Wang J., Zhang X., Lin T., Ren J., Pang W. Tetrahedron Lett. 2022, 100, 153849. doi 10.1016/j.tetlet.2022.153849.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library