RAS Chemistry & Material ScienceЖурнал органической химии Russian Journal of Organic Chemistry

  • ISSN (Print) 0514-7492
  • ISSN (Online) 3034-6304

Synthesis, Antimicrobial Activity, and Molecular Docking of N-Phenylcarbamate Derivatives with a Heterocyclic Moiety

PII
S30346304S0514749225050083-1
DOI
10.7868/S3034630425050083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
572-584
Abstract
By condensing o-phenylenediamine with 2(4)-aminobenzoic acids in 65% polyphosphoric acid at a temperature of 180–190°C for 4 h or by boiling the reagents in o-xylene in the presence of tetrabutoxytitanium, 2-(2(4)-aminophenyl)benzimidazoles were obtained, the acylation of which with methyl chloroformate in the presence of triethylamine led to the production of the corresponding benzimidazoles with a carbamate function. Condensation of o-phenylenediamine and 4-nitro-o-phenylenediamine with glycolic acid in the presence of 70–75% polyphosphoric acid with heating for four hours at 130°C yielded 2-hydroxymethylbenzimidazole with a yield of 81% and 5-nitro-2-hydroxymethylbenzimidazole with a yield of 84%, which, when treated with phenyl isocyanate in tetrahydrofuran at 27–30°C for 3.5 h, were converted into the corresponding benzimidazole derivatives with a yield of 84–86%. In order to find the most promising ones for further biological research, molecular docking of synthesized 2-substituted benzimidazoles, as well as previously obtained carbamate derivatives of pyridazine and N-allyl derivatives of 2-morpholinoethyl-N-phenylcarbamate and 2-(2-pyridinyl)ethyl-N-phenylcarbamate was carried out based on interaction with the enzyme glucosamine-6-phosphate synthase.
Keywords
карбаматные производные бензимидазола пиридазина N-аллильные производные 2-морфолиноэтил-N-фенилкарбамата и 2-(2-пиридинил)этил-N-фенилкарбамата молекулярный докинг глюкозамин-6-фосфатсинтаза противомикробная активность
Date of publication
12.12.2025
Year of publication
2025
Number of purchasers
0
Views
48

References

  1. 1. Fan J., Fu A., Zhang L. Quantitative Biol. 2019, 7, 83–89. doi 10.1007/s40484-019-0172-y
  2. 2. Pagadala N. S., Syed K., Tuszynski J. Biophysical Reviews. 2017, 9, 91–102. doi 10.1007/s12551-016-0247-1
  3. 3. Ajani O. O., Aderohunmu D. V., Ikpo C. O., Adedapo A. E., Olanrewaju I. O. Arch. Pharm. Chem. Life Sci. 2016. 349, 1–32. doi 10.1002/ardp.201500464
  4. 4. Shah K., Chhabra S., Shrivastava S.K., Mishra P. Med. Chem. Res. 2013, 22, 5077–5104. doi 10.1007/s00044-013-0476-9
  5. 5. Shirini F., Mamaghani M., Seddighi M. Res. Chem. Intermed. 2014, 41, 5611–5619. doi 10.1007/s11164-014-1685-7
  6. 6. Soni L.K., Narsinghani T., Sethi A. Med. Chem. Res. 2012, 21, 4330–4334. doi 10.1007/s00044-012-9976-2
  7. 7. Veerasamy R., Roy A., Karunakaran R., Rajak H. Pharmaceuticals. 2021, 14, 663. doi 10.3390/ph14070663
  8. 8. Patil A., Ganguly S., Surana S. Rasayan J. Chem. 2008, 1, 447−460.
  9. 9. Спасов А.А., Яковлев Д.С., Мальцев Д.В., Жуковская А.Н., Анисимова В.А., Ковалев Г.И., Зимин И.А., Марковина Я.В. Биоорг. хим. 2016, 42, 440-447. @@Spasov A.A., Yakovlev D.S., Maltsev D.V., Zhukovskaya O.N., Anisimova V.A., Kovalev G.I., Zimin I.A., Morkovina Y. V. Russ. J. Bioorg. Chem. 2016, 42, 397-403. doi 10.1134/S1068162016040178
  10. 10. Geeta Y., Swastika G. Eur. J. Med. Chem. 2015, 97, 419−443. doi 10.1016/j.ejmech.2014.11.053
  11. 11. Menteşe E., Doğan I.S., Kahveci B. ХГС. 2013, 49, 1221-1225. [Menteşe E., Doğan I.S., Kahveci B. Chem. Heterocycl. Compd. 2013, 49, 1136–1140. doi 10.1007/s10593-013-1354-6
  12. 12. Chen Q., Zuo X., Liang H., Zhu T., Zhong Y., Liu J., Nan J. CS Appl. Mater. Interfaces. 2020, 12, 637–645. doi 10.1021/acsami.9b17374
  13. 13. Kneubuhler S., Thull V., Altomare C., Carts V., Gaillard P., Carrupt P.A., Carotti A., Testa B. J. Med. Chem. 1995, 38, 3874–3883. doi 10.1021/jm00019a018
  14. 14. Kneubuhler S., Carta V., Altomare C., Carottib A., Testaa B. Helv. Chim. Acta. 1993, 76, 1956–1963.
  15. 15. Tucaliuc R.-A., Cotea V.V., Niculaua M., Tuchilus C., Mantu D., Mangalagiu I.I., Eur. J. Med. Chem. 2013, 67, 367–372. doi 10.1016/j.ejmech.2013.04.069
  16. 16. Asif M., Singh A., Ratnakar L., J. Pharm. Res. 2011, 4, 664–667.
  17. 17. Paneth A., Trotsko N., Popiolek L., Grzegorczyk A., Krzanowski T., Janowska S., Malm A., Wujec M. Chem. Biodiversity. 2019, 16, e1900377. doi 10.1002/cbdv.201900377
  18. 18. Asadi P., Khodarahmi G., Jahanian-Najafabadi A., Saghaie L., Hassanzadeh F. Chem. Biodiversity. 2017, 14, e1600411. doi 10.1002/cbdv.201600411
  19. 19. Shiroza T., Ebisawa N., Furihata K., Endō T., Seto H., Ōtake N. Agricult. Biol. Chem. 1982, 46, 1891–1898. doi 10.1080/00021369.1982.10865330
  20. 20. Zerroug A., Belaidi S., BenBrahim I., Sinha L., Chtita S. J. King Saud Univ. Sci. 2018, 31, 595–601. doi 10.1016/j.jksus.2018.03.024
  21. 21. McDermott L.A., Iyer P., Vernetti L., Rimer S., Sun J., Boby M., Yang T., Fioravanti M., O’Neill J., Wang L. Bioorg. Med. Chem. 2016, 24, 1819–1839. doi 10.1016/j.bmc.2016.03.009
  22. 22. Hu Z., Wang C., Han W., Rossi K.A., Bozarth J.M., Wu Y., Sheriff S., Myers J.E., Luettgen J.M., Seiffert D.A. Bioorg. Med. Chem. Lett. 2018, 28, 987–992. doi 10.1016/j.bmcl.2018.02.049
  23. 23. Nagle P., Pawar Y., Sonawane A., Bhosale S., More D. Med. Chem. Res. 2014, 23, 918–926. doi 10.1007/s00044-013-0685-2
  24. 24. Kim I., Kang G., Lee K., Park B., Kang D., Jung H., He Y.-T., Baik M.-H., Hong S. J. Am. Chem. Soc. 2019, 141, 9239–9248. doi 10.1021/jacs.9b02013
  25. 25. Mech P., Bogunia M., Nowacki A., Makowski M. J. Physical Chem. A. 2019, 124, 538–551. doi 10.1021/acs.jpca.9b10319
  26. 26. Wei X., Yang J., Dai Z., Yu H.-F., Ding C.-F., Khan A., Zhao Y.-L., Liu Y.-P., Luo X.-D., Tetrahedron Lett. 2020, 61, 151502. doi 10.1016/j.tetlet.2019.151502
  27. 27. Al-Refai M., Ibrahim M.M., Azmi M.N., Osman H., Abu Bakar M.H., Geyer A. Molecules. 2019, 24, 4072–4074. doi 10.3390/molecules24224072
  28. 28. Marinescu M., Popa C.-V. Int. J. Mol. Sci. 2022, 23, 5659. doi 10.3390/ijms23105659
  29. 29. Khan E. ChemistrySelect. 2021, 6, 3041-3064. doi 10.1002/slct.202100332
  30. 30. Kourounakis A.P., Xanthopoulos D., Tzara A. Med. Res. Rev. 2019, 40, 709-752. doi 10.1002/med.21634
  31. 31. Arshad F., Khan M.F., Akhtar W., Alam M.M., Nainwal L.M., Kaushik S.K., Akhter M., Parvez S., Hasan S.M., Shaquiquzzaman M. Eur. J. Med. Chem. 2019, 167, 324-356. doi 10.1016/j.ejmech.2019.02.015
  32. 32. Grimmett M.R. Best synthetic methods. Imidazole and Benzimidazole. Synthesis. San Diego: Academic Press Inc, 1997.
  33. 33. Smith J.G., Ho I. Tetrahedron Lett. 1971, 38, 3541–3544. doi 10.1016/S0040-4039(01)97226-0
  34. 34. Veeranagaiah V., Rao N.V.S., Ratnam C.V. Proceedings Indian Acad. Sci., Section A. 1974, 79, 230−235.
  35. 35. Tzani M.A., Gabriel C., Lykakis I. Nanomaterials. 2020, 10, 2405. doi 10.3390/nano10122405
  36. 36. Баевский М.Ю., Маметов Д.Р. Ученые записки Крымского федерального университета им. В.И. Вернадского. Сер. Биол., хим. 2015, 1, 191–196.
  37. 37. Tang P. Org. Synth. 2005, 81, 262–268.
  38. 38. Баевский А.М., Баевский М.Ю., Цикалов В.В., Шелудько А.Б Ученые записки Таврического нац. университета им. В.И. Вернадского. Сер. “Биология, химия”. 2011, 24, 339–346.
  39. 39. Sharghi H., Asemani O., Khalifeh R. Synth. Commun. 2008, 38, 1128-1136. doi 10.1080/00397910701863657
  40. 40. Rekha A., Hamza A., Venugopal B.R., Nagara J.U. Chin. J. Catal. 2012, 33, 439–446.
  41. 41. Kanaoka Yu., Yonemitsu O., Tanizawaka K., Ban Y. Chem. Pharm. Bull. 1964, 12, 773–778.
  42. 42. Shteinberg. L.Ya., Kondratov S.A., Boiko V.D., Shein S.M. Zh. Org. Khim. 1986, 22, 2466–2467.
  43. 43. Халиков С.С., Архипов И.А., Варламова А.И., Халиков М.С., Чистяченко Ю.С., Душкин А.В. Юг России: экология, развитие. 2016, 11, 178–192.
  44. 44. Zhang C., Xu D., Wang J., Kang C. Russ. J. Gen. Chem. 2017, 87, 3006–3016. doi 10.1134/S1070363217120465
  45. 45. Великородов А.В., Зухайраева А.С., Чабакова А.К., Ковалев В.Б. ЖОрХ. 2018, 54, 1497-1502. @@Velikorodov A.V., Zukhairaeva A.S., Chabakova A.K. Russ. J. Org. Chem. 2018, 54, 1509-1514. doi 10.1134/S1070428018100123
  46. 46. Великородов А.В., Кутлалиева Э.Н., Золотарева Н.В., Степкина Н.Н., Носачев С.Б., ЖорХ, 2024, 60, 953-961. @@Velikorodov A.V., Kutlalieva E.N., Zolotareva N.V., Stepkina N.N., Nosachev S.B. Russ. J. Org. Chem. 2024, 60, 1186-1192. doi 10.1134/S1070428024070078
  47. 47. Stefaniak J., Nowak M. G., Wojciechowski M., Milewski S., Skwarecki A.S. J. Enzyme Inhib. Med. Chem. 2022, 37, 1928-1956. doi 10.1080/14756366.2022.2096018
  48. 48. Katariya K.D., Vennapu D.R., Shah S.R. J. Mol. Struct. 2021, 1232, 130036. doi 10.1016/j.molstruc.2021.130036
  49. 49. Omara A.M., Ihmaid S., Habibd EL-Sayed E., Althagfan S.S., Ahmed S., Abulkhair H.S., Ahmed H.E.A. Bioorg. Chem. 2020, 99, 103781. doi 10.1016/j.bioorg.2020.103781
  50. 50. Vijesh A.M., Isloor A.M., Telkar S., Arulmoli T., Fun H.-K. Arabian J. Chem. 2013, 6, 197-204. doi 10.1016/j.arabjc.2011.10.007
  51. 51. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A. J. J. Comput. Chem. 2009, 30, 2785–2791. doi 10.1002/jcc.21256
  52. 52. Morris G.M., Huey R., Olson A.J. Curr. Protoc. Bioinformatics. 2008, 24, 8-14. doi 10.1002/0471250953.bi0814s24 
  53. 53. ChemOffice (Ultra Version 9.0) – пакет програмных средств CabridgeSoft Corporation, 2005.
  54. 54. Лабинская А.С. Микробиология с техникой микробиологических исследований, М.: Медицина, 1972.
  55. 55. Ayhan-Kılcıgil G., Altanlar N. Il Farmaco. 2003, 58, 1345-1350. doi 10.1016/s0014-827x(03)00190-3
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library