- PII
- S30346304S0514749225050083-1
- DOI
- 10.7868/S3034630425050083
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 5
- Pages
- 572-584
- Abstract
- By condensing o-phenylenediamine with 2(4)-aminobenzoic acids in 65% polyphosphoric acid at a temperature of 180–190°C for 4 h or by boiling the reagents in o-xylene in the presence of tetrabutoxytitanium, 2-(2(4)-aminophenyl)benzimidazoles were obtained, the acylation of which with methyl chloroformate in the presence of triethylamine led to the production of the corresponding benzimidazoles with a carbamate function. Condensation of o-phenylenediamine and 4-nitro-o-phenylenediamine with glycolic acid in the presence of 70–75% polyphosphoric acid with heating for four hours at 130°C yielded 2-hydroxymethylbenzimidazole with a yield of 81% and 5-nitro-2-hydroxymethylbenzimidazole with a yield of 84%, which, when treated with phenyl isocyanate in tetrahydrofuran at 27–30°C for 3.5 h, were converted into the corresponding benzimidazole derivatives with a yield of 84–86%. In order to find the most promising ones for further biological research, molecular docking of synthesized 2-substituted benzimidazoles, as well as previously obtained carbamate derivatives of pyridazine and N-allyl derivatives of 2-morpholinoethyl-N-phenylcarbamate and 2-(2-pyridinyl)ethyl-N-phenylcarbamate was carried out based on interaction with the enzyme glucosamine-6-phosphate synthase.
- Keywords
- карбаматные производные бензимидазола пиридазина N-аллильные производные 2-морфолиноэтил-N-фенилкарбамата и 2-(2-пиридинил)этил-N-фенилкарбамата молекулярный докинг глюкозамин-6-фосфатсинтаза противомикробная активность
- Date of publication
- 12.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 48
References
- 1. Fan J., Fu A., Zhang L. Quantitative Biol. 2019, 7, 83–89. doi 10.1007/s40484-019-0172-y
- 2. Pagadala N. S., Syed K., Tuszynski J. Biophysical Reviews. 2017, 9, 91–102. doi 10.1007/s12551-016-0247-1
- 3. Ajani O. O., Aderohunmu D. V., Ikpo C. O., Adedapo A. E., Olanrewaju I. O. Arch. Pharm. Chem. Life Sci. 2016. 349, 1–32. doi 10.1002/ardp.201500464
- 4. Shah K., Chhabra S., Shrivastava S.K., Mishra P. Med. Chem. Res. 2013, 22, 5077–5104. doi 10.1007/s00044-013-0476-9
- 5. Shirini F., Mamaghani M., Seddighi M. Res. Chem. Intermed. 2014, 41, 5611–5619. doi 10.1007/s11164-014-1685-7
- 6. Soni L.K., Narsinghani T., Sethi A. Med. Chem. Res. 2012, 21, 4330–4334. doi 10.1007/s00044-012-9976-2
- 7. Veerasamy R., Roy A., Karunakaran R., Rajak H. Pharmaceuticals. 2021, 14, 663. doi 10.3390/ph14070663
- 8. Patil A., Ganguly S., Surana S. Rasayan J. Chem. 2008, 1, 447−460.
- 9. Спасов А.А., Яковлев Д.С., Мальцев Д.В., Жуковская А.Н., Анисимова В.А., Ковалев Г.И., Зимин И.А., Марковина Я.В. Биоорг. хим. 2016, 42, 440-447. @@Spasov A.A., Yakovlev D.S., Maltsev D.V., Zhukovskaya O.N., Anisimova V.A., Kovalev G.I., Zimin I.A., Morkovina Y. V. Russ. J. Bioorg. Chem. 2016, 42, 397-403. doi 10.1134/S1068162016040178
- 10. Geeta Y., Swastika G. Eur. J. Med. Chem. 2015, 97, 419−443. doi 10.1016/j.ejmech.2014.11.053
- 11. Menteşe E., Doğan I.S., Kahveci B. ХГС. 2013, 49, 1221-1225. [Menteşe E., Doğan I.S., Kahveci B. Chem. Heterocycl. Compd. 2013, 49, 1136–1140. doi 10.1007/s10593-013-1354-6
- 12. Chen Q., Zuo X., Liang H., Zhu T., Zhong Y., Liu J., Nan J. CS Appl. Mater. Interfaces. 2020, 12, 637–645. doi 10.1021/acsami.9b17374
- 13. Kneubuhler S., Thull V., Altomare C., Carts V., Gaillard P., Carrupt P.A., Carotti A., Testa B. J. Med. Chem. 1995, 38, 3874–3883. doi 10.1021/jm00019a018
- 14. Kneubuhler S., Carta V., Altomare C., Carottib A., Testaa B. Helv. Chim. Acta. 1993, 76, 1956–1963.
- 15. Tucaliuc R.-A., Cotea V.V., Niculaua M., Tuchilus C., Mantu D., Mangalagiu I.I., Eur. J. Med. Chem. 2013, 67, 367–372. doi 10.1016/j.ejmech.2013.04.069
- 16. Asif M., Singh A., Ratnakar L., J. Pharm. Res. 2011, 4, 664–667.
- 17. Paneth A., Trotsko N., Popiolek L., Grzegorczyk A., Krzanowski T., Janowska S., Malm A., Wujec M. Chem. Biodiversity. 2019, 16, e1900377. doi 10.1002/cbdv.201900377
- 18. Asadi P., Khodarahmi G., Jahanian-Najafabadi A., Saghaie L., Hassanzadeh F. Chem. Biodiversity. 2017, 14, e1600411. doi 10.1002/cbdv.201600411
- 19. Shiroza T., Ebisawa N., Furihata K., Endō T., Seto H., Ōtake N. Agricult. Biol. Chem. 1982, 46, 1891–1898. doi 10.1080/00021369.1982.10865330
- 20. Zerroug A., Belaidi S., BenBrahim I., Sinha L., Chtita S. J. King Saud Univ. Sci. 2018, 31, 595–601. doi 10.1016/j.jksus.2018.03.024
- 21. McDermott L.A., Iyer P., Vernetti L., Rimer S., Sun J., Boby M., Yang T., Fioravanti M., O’Neill J., Wang L. Bioorg. Med. Chem. 2016, 24, 1819–1839. doi 10.1016/j.bmc.2016.03.009
- 22. Hu Z., Wang C., Han W., Rossi K.A., Bozarth J.M., Wu Y., Sheriff S., Myers J.E., Luettgen J.M., Seiffert D.A. Bioorg. Med. Chem. Lett. 2018, 28, 987–992. doi 10.1016/j.bmcl.2018.02.049
- 23. Nagle P., Pawar Y., Sonawane A., Bhosale S., More D. Med. Chem. Res. 2014, 23, 918–926. doi 10.1007/s00044-013-0685-2
- 24. Kim I., Kang G., Lee K., Park B., Kang D., Jung H., He Y.-T., Baik M.-H., Hong S. J. Am. Chem. Soc. 2019, 141, 9239–9248. doi 10.1021/jacs.9b02013
- 25. Mech P., Bogunia M., Nowacki A., Makowski M. J. Physical Chem. A. 2019, 124, 538–551. doi 10.1021/acs.jpca.9b10319
- 26. Wei X., Yang J., Dai Z., Yu H.-F., Ding C.-F., Khan A., Zhao Y.-L., Liu Y.-P., Luo X.-D., Tetrahedron Lett. 2020, 61, 151502. doi 10.1016/j.tetlet.2019.151502
- 27. Al-Refai M., Ibrahim M.M., Azmi M.N., Osman H., Abu Bakar M.H., Geyer A. Molecules. 2019, 24, 4072–4074. doi 10.3390/molecules24224072
- 28. Marinescu M., Popa C.-V. Int. J. Mol. Sci. 2022, 23, 5659. doi 10.3390/ijms23105659
- 29. Khan E. ChemistrySelect. 2021, 6, 3041-3064. doi 10.1002/slct.202100332
- 30. Kourounakis A.P., Xanthopoulos D., Tzara A. Med. Res. Rev. 2019, 40, 709-752. doi 10.1002/med.21634
- 31. Arshad F., Khan M.F., Akhtar W., Alam M.M., Nainwal L.M., Kaushik S.K., Akhter M., Parvez S., Hasan S.M., Shaquiquzzaman M. Eur. J. Med. Chem. 2019, 167, 324-356. doi 10.1016/j.ejmech.2019.02.015
- 32. Grimmett M.R. Best synthetic methods. Imidazole and Benzimidazole. Synthesis. San Diego: Academic Press Inc, 1997.
- 33. Smith J.G., Ho I. Tetrahedron Lett. 1971, 38, 3541–3544. doi 10.1016/S0040-4039(01)97226-0
- 34. Veeranagaiah V., Rao N.V.S., Ratnam C.V. Proceedings Indian Acad. Sci., Section A. 1974, 79, 230−235.
- 35. Tzani M.A., Gabriel C., Lykakis I. Nanomaterials. 2020, 10, 2405. doi 10.3390/nano10122405
- 36. Баевский М.Ю., Маметов Д.Р. Ученые записки Крымского федерального университета им. В.И. Вернадского. Сер. Биол., хим. 2015, 1, 191–196.
- 37. Tang P. Org. Synth. 2005, 81, 262–268.
- 38. Баевский А.М., Баевский М.Ю., Цикалов В.В., Шелудько А.Б Ученые записки Таврического нац. университета им. В.И. Вернадского. Сер. “Биология, химия”. 2011, 24, 339–346.
- 39. Sharghi H., Asemani O., Khalifeh R. Synth. Commun. 2008, 38, 1128-1136. doi 10.1080/00397910701863657
- 40. Rekha A., Hamza A., Venugopal B.R., Nagara J.U. Chin. J. Catal. 2012, 33, 439–446.
- 41. Kanaoka Yu., Yonemitsu O., Tanizawaka K., Ban Y. Chem. Pharm. Bull. 1964, 12, 773–778.
- 42. Shteinberg. L.Ya., Kondratov S.A., Boiko V.D., Shein S.M. Zh. Org. Khim. 1986, 22, 2466–2467.
- 43. Халиков С.С., Архипов И.А., Варламова А.И., Халиков М.С., Чистяченко Ю.С., Душкин А.В. Юг России: экология, развитие. 2016, 11, 178–192.
- 44. Zhang C., Xu D., Wang J., Kang C. Russ. J. Gen. Chem. 2017, 87, 3006–3016. doi 10.1134/S1070363217120465
- 45. Великородов А.В., Зухайраева А.С., Чабакова А.К., Ковалев В.Б. ЖОрХ. 2018, 54, 1497-1502. @@Velikorodov A.V., Zukhairaeva A.S., Chabakova A.K. Russ. J. Org. Chem. 2018, 54, 1509-1514. doi 10.1134/S1070428018100123
- 46. Великородов А.В., Кутлалиева Э.Н., Золотарева Н.В., Степкина Н.Н., Носачев С.Б., ЖорХ, 2024, 60, 953-961. @@Velikorodov A.V., Kutlalieva E.N., Zolotareva N.V., Stepkina N.N., Nosachev S.B. Russ. J. Org. Chem. 2024, 60, 1186-1192. doi 10.1134/S1070428024070078
- 47. Stefaniak J., Nowak M. G., Wojciechowski M., Milewski S., Skwarecki A.S. J. Enzyme Inhib. Med. Chem. 2022, 37, 1928-1956. doi 10.1080/14756366.2022.2096018
- 48. Katariya K.D., Vennapu D.R., Shah S.R. J. Mol. Struct. 2021, 1232, 130036. doi 10.1016/j.molstruc.2021.130036
- 49. Omara A.M., Ihmaid S., Habibd EL-Sayed E., Althagfan S.S., Ahmed S., Abulkhair H.S., Ahmed H.E.A. Bioorg. Chem. 2020, 99, 103781. doi 10.1016/j.bioorg.2020.103781
- 50. Vijesh A.M., Isloor A.M., Telkar S., Arulmoli T., Fun H.-K. Arabian J. Chem. 2013, 6, 197-204. doi 10.1016/j.arabjc.2011.10.007
- 51. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A. J. J. Comput. Chem. 2009, 30, 2785–2791. doi 10.1002/jcc.21256
- 52. Morris G.M., Huey R., Olson A.J. Curr. Protoc. Bioinformatics. 2008, 24, 8-14. doi 10.1002/0471250953.bi0814s24
- 53. ChemOffice (Ultra Version 9.0) – пакет програмных средств CabridgeSoft Corporation, 2005.
- 54. Лабинская А.С. Микробиология с техникой микробиологических исследований, М.: Медицина, 1972.
- 55. Ayhan-Kılcıgil G., Altanlar N. Il Farmaco. 2003, 58, 1345-1350. doi 10.1016/s0014-827x(03)00190-3